Affichage des articles dont le libellé est Réseau écologique. Afficher tous les articles
Affichage des articles dont le libellé est Réseau écologique. Afficher tous les articles

mardi 11 mars 2014

Le suicide du criquet, une aubaine pour la forêt


Encore un insecte qui a perdu la tête. Après avoir frénétiquement exploré les alentours jusqu’à la découverte d’une rivière, voilà que le criquet s’y précipite, lui qui n’est pas aquatique pour un sou. Drôle d’idée quand on ne sait pas nager. Serait-ce un acte de bravoure et de dévotion de sa part sachant son rôle potentiellement prépondérant sur la communauté des autres insectes de la forêt, et… sur le maintien d’une espèce de truite menacée ? Heu, mais c’est quoi ce long ver immonde qui s’extirpe onduleusement de l’anus de notre criquet ??

Le criquet vient de sauter dans l'eau. S'extirpe ensuite un long ver de son anus (Source)



Encore une histoire de zombies…    


Avant d’évoquer les conséquences d’un tel geste pour son entourage, un petit rembobinage express s’impose pour comprendre ce qui a poussé notre compère à commettre cet acte désespéré.  

L’histoire commence dans la rivière même, bien loin de notre suicidaire. Parmi la faune foisonnante, on rencontre des nématomorphes, de longs vers de plusieurs dizaines de centimètres, ondulant gracieusement (ou diaboliquement, c’est selon). Ces animaux sont des parasitoïdes, autrement dit ils se développent dans d’autres organismes avec, contrairement aux parasites, une forte tendance à tuer ces derniers… Qui plus est, les nématomorphes disposent d’un cycle de vie complexe, impliquant donc plusieurs hôtes. Les larves vont d’abord infester des insectes que l’on trouve dans l’eau, comme des larves d’éphémères. Alors que ces dernières vont ensuite se transformer, le ver va survivre au processus et pouvoir alors accéder au milieu terrestre. Comme tout se recycle, notre éphémère, même mort, se fera grignoter par quelqu’autre insecte, parmi lesquels des criquets ! Ensuite, l’histoire ressemble drôlement à celle de nos parasites manipulateurs, créatures zombifiantes à qui j’ai récemment consacré tout un article. Si le nématomorphe lorgne le milieu aquatique, nécessaire pour l’achèvement de son cycle et notamment sa reproduction, le criquet a malheureusement pour ce dernier une vie terrestre. Le parasitoïde semble adopter une stratégie plutôt payante pour lui : il prend le contrôle du criquet !

Ca commence par des symptômes assez inquiétants, le criquet se mettant à être beaucoup plus explorateur qu’à la normale, tout en étant, et contrairement à son habitude, subitement attiré par la lumière (Ponton et al. 2011). Pour comprendre les mécanismes impliqués dans les changements de comportements, l’équipe de Biron (2008) a mené une investigation protéomique, mettant en évidence ce qu’il se passe concrètement dans la tête du criquet quand il perd les pédales. Sans surprise, une des protéines dont l’expression est altérée au moment du changement de comportement du criquet dispose justement des domaines classiquement impliqués dans le système visuel. Et puis une fois la source d’eau détectée, le criquet saute dedans, ni plus ni moins. Les chiffres sont impressionnants. Par exemple, Sanchez et ses collaborateurs (2008) ont montré que 80% des criquets Nemobius sylvestris infectés par le nématomorphe Paragordius tricuspidatus se jettent à l’eau, contre 10% chez les individus sains (de corps, mais apparemment pas d’esprit…). Les nématomorphes du genre Gordionus, quant à eux, augmentent de 20 fois les chances qu’un criquet finisse dans l’eau (Sato et al. 2011a). Pour les criquets qui ont la chance d‘échapper à la noyade, mais aussi de survivre à l’extirpation du ver par leur anus, le comportement reviendra progressivement à la normal (Ponton et al. 2011). Quant au nématomorphe, l’idée est de s’extirper de l’insecte avant que celui-ci, dans sa vaine panique, n’attire des prédateurs. Et dans le cas où ver et criquet finissent ensemble dans un estomac, le combat n’est pas perdu pour le parasitoïde qui va utiliser ses talents d’extirpation, mais en s’échappant cette fois par la bouche du prédateur… 




Pour voir d’autres vidéos, notamment un nématomorphe ressortant d’une grenouille, un petit tour sur cet article de SSAFT. Et puis par ici pour une touche d'humour.


L’effet papillon


De nombreuses études ont montré que les parasites et parasitoïdes, malgré l’image négative que le grand public leur alloue, sont souvent d’une grande importance dans l’écosystème. Dans l’exemple des criquets, l’idée la plus intuitive serait que les nématomorphes pourraient avoir un impact sur la dynamique de population des criquets. Mais c’est à une autre échelle que l’on va se pencher maintenant : celle de l’écosystème tout entier.

Faisons un petit tour au Japon où Sato et ses collaborateurs ont étudié (et étudient encore) de très près le rôle des nématomorphes du genre Gordionus. Là-bas vit la truite Salvenicus leucomaenis japonicus, menacée par la surpêche et la destruction de son habitat. Or, les scientifiques se sont vite rendus compte que si un criquet dans l’eau est nécessaire pour le nématomorphe, cela constitue également une aubaine pour les habitants de la rivière, et notamment notre truite. Sato et ses collaborateurs (2011a) ont donc entrepris de mesurer la contribution énergétique apportée par les criquets aux truites. Le résultat est impressionnant : les criquets constitueraient 60% de l’apport de calories annuel des truites, une part très loin d’être négligeable, pouvant même contribuer à la persistance de l’espèce. De plus, cette importance n’est pas qu’une question de proportion puisque d’une part les criquets augmentent la masse totale de nourriture ingérée (les truites mangent moins quand il n’y a pas de criquets dans l’eau), et d’autre part la quantité de nourriture ingérée par les truites est directement corrélée à l’importance de la présence en nématomorphes aux alentours, mais curieusement pas corrélée à la présence des criquets sur les rebords de la rivière, preuve de l’importance du parasitoïde. De plus, la présence de nématomorphes est plus faible dans les plantations de conifères qui remplacent petit à petit les forêts natives (Sato et al. 2011b). Le changement de type de forêt pourrait donc avoir comme conséquence indirecte une diminution de la population de truites, par l’intermédiaire seul de la diminution de la population de nématomorphes…

Cycle de vie du nématomorphe et flux d’énergie autour de la truite. D’après Sato et al. 2011a.


Enfin, élargissons notre champ d’investigations. Les criquets constituent une aubaine pour la truite, notamment puisqu’ils sont des proies faciles, se mouvant maladroitement dans l’eau quand ils ne sont pas déjà morts. La truite va donc délaisser les autres proies potentielles, qui elles sont plus adaptées au milieu aquatique (et donc fichtrement plus fourbes à attraper). Des insectes dont la larve est aquatique, notamment, vont ainsi voir leur succès de passage à la vie terrestre augmenter grâce au répit assuré par les criquets. Ephémères et demoiselles par exemple, vont ainsi pouvoir se métamorphoser, migrant de la rivière vers la forêt, et permettant une présence de proies pour les animaux terrestres. Le tout sans compter que l’écosystème de la rivière est lui aussi chamboulé. Le répit laissé aux invertébrés aquatiques mène également à une diminution de la biomasse en algues, alors plus consommées par ces derniers, bousculant ainsi le flux d’énergie à l’échelle de la rivière toute entière (Sato et al. 2012).


Effet en cascade de la présence de criquets dans la rivière, sur les poissons, les invertébrés aquatiques et les ressources organiques. D’après Sato et al. 2012.


Quand on regarde l’ensemble du tableau, on a l’écosystème de toute une forêt, incluant la rivière, modulé par un ver à priori insignifiant et cantonné dans un autre organisme. Cet effet papillon est tel que Sato et ses collègues ont publié, en début d’année, une étude portant sur le rétablissement à long terme d’une forêt en lien avec les populations de criquets et des nématomorphes. De quoi observer parasites et parasitoïdes d’un tout nouvel œil…



Bibliographie


Biron, D.G., Ponton, F., Marché, L., Galeotti, N., Renault, L., Demey-Thomas, E., Poncet, J., Brown, S.P., Jouin, P. & Thomas, F. 2006. « Suicide » of crickets harbouring hairworms: a proteomics investigation. Insect Molecular Biology, 15, 731-742.

Ponton, F., Otalora-Luna, F., Lefèvre, T. Guerin, P., Lebarbenchon, C., Duneau, D., Biron, D.G. & Thomas, F. 2011. Water-seeking behavior in worm-infected crickets and reversibility of parasitic manipulation. Behavioral Ecology, 22, 392-400.

Sanchez, M.I., Ponton, F., Schmidt-Rhaesa, A., Hughes, D.P., Missé, D. & Thomas, F. 2008. Two steps to suicide in crickets harbouring hairworms. Animal Behaviour, 76, 1621-1624.

Sato, T., Watanabe, K., Kanaiwa, M., Niizuma, Y., Harada, Y. & Lafferty, K.D. 2011a. Nematomorph parasites drive energy flow through a riparian ecosystem. Ecology, 91, 201-207.

Sato, T., Watanabe, K., Tokuchi, N., Kamauchi, H., Harada, Y. & Lafferty, K.D. 2011b. A nematomorph parasite explains variation in terrestrial subsidies to trout streams in Japan. Oikos, 120, 1596-1599.

Sato, T., Egusa, T., Fukushima, K., Oda, T., Ohte, N., Tokuchi, N., Watanabe, K., Kanaiwa, M., Murakami, I. & Lafferty, K. 2012. Nematomorph parasites indirectly alter the food web and ecosystem function of streams through behavioural manipulation of their cricket hosts. Ecology Letters, 15, 786-793.

Sato, T., Watanabe, K., Fukischima, K. & Tokuchi, N. 2014. Parasites and forest chronosequence: Long-term recovery of nematomorph parasites after clear-cut logging. Forest Ecology and Management, 314, 166-171.



Sophie Labaude

dimanche 10 février 2013

Plus imposant que Facebook et surtout incontournable, les réseaux écologiques!


Ça fait quelques temps que je n'ai pas publié d'articles sur le blog, et pour cause, depuis un peu plus de 3 mois, j'ai commencé une thèse dans un super laboratoire de la Franche-Comté (le comté, la cancoillote, le mont d'or et la saucisse sont devenus mon quotidien ;) ). Lorsque mes amis me demandent sur quoi je travaille, ils restent bloqués quelques secondes quand je leur énonce le titre de ma thèse.... Ils ne comprennent pas tout. Faisons un petit essai: "Modélisation du réseau trophique microbien des tourbières à Sphaignes".... Alors? Sur quels mots avez-vous coincés? A mon grand étonnement, ce n'est pas le mot "modélisation" qui pose problème le plus souvent, mais l'expression "réseau trophique". En fait, ça fait tellement longtemps que je fais de l'écologie qu'elle me parait pleine de sens et j'en ai vite oublié que ça n'était pas le cas pour tout le monde. 
Donc voilà une petite explication de ce que sont les réseaux trophiques, et les réseaux écologiques de façon générale.



Les relations entre l’ensemble des être vivants de la planète sont structurées au sein de réseaux écologiques.  Vous vous demandez ce qu’est un réseau écologique ? 
Un réseau, vous savez ce que c’est… Facebook, tweeter sont des réseaux sociaux, Viadeo, LinkedIn des réseaux socio-professionnels, votre club de foot, de rugby, de yoga ou de tennis constitue votre réseau sportif, et votre famille et vos amis appartiennent à votre réseau proche. Avec tous ces exemples, vous aurez compris qu’un réseau c’est une toile constituée d’éléments (dans mes exemples, les éléments sont des personnes) reliés entre eux.

Le réseau Facebook mondial par Paul Butler
Mais alors un réseau écologique c’est quoi ? 
Un réseau écologique repose sur les relations écologiques. Les relations écologiques sont toutes les interactions positives, négatives ou neutres qui existent entre les espèces d’une communauté au sein d’un environnement donné. Les interactions positives peuvent être par exemple des symbioses ou du mutualisme et les interactions négatives sont la plupart du temps de la prédation, du parasitisme et de la compétition. Ainsi trois types de réseaux font plus particulièrement l’objet de recherche : les réseaux mutualistes (1% des recherches), les réseaux parasites (4% des recherches) et les réseaux trophiques (94% des recherches).
Illustration proposée par Elisa Thébault, Alix Sauve et Collin Fontaine pour la Chaire Modélisation mathématique et Biodiversité
De très récents travaux mêlent les deux types d’interactions positive et négative que sont respectivement le mutualisme et la prédation. Elisa Thébault et Colin Fontaine ont initié des travaux dans ce domaine en montrant en 2010 que le type d’interaction avait un impact sur la stabilité de la communauté.  (Pour en savoir plus, le blog Naked Science nous fait un point sur l’article publié dans Science).

Mais comme je l’ai précédemment mentionné, la plupart des réseaux écologiques étudiés sont des réseaux trophiques. Mais pourquoi ? Un réseau trophique est ce que le commun des mortels appelle une chaine alimentaire. Sauf que la notion de chaine suppose un schéma linéaire : Une ressource (une plante ou de la matière morte) mangé par un consommateur primaire, lui-même chassé et mangé par un prédateur plus gros. C’est ce que pensaient aussi les scientifiques au début des recherches dans ce domaine avant de se rendre compte de la complexité des communautés biologiques.
Un réseau trophique constitue un schéma plus complexe où chaque élément du réseau peut manger, être mangé par, et être en compétition avec plusieurs autres éléments.
D’autre part les réseaux trophiques sont présents dans tous les types de milieux, dans tous les environnements possible et imaginable, à partir du moment où il y a de la vie. Ils concernent tous les organismes donc peuvent être observés à différentes échelles d’observation, de l’échelle microscopique à l’échelle macroscopique.


Représentation d'un réseau trophique marin (source: Ifremer)

En milieu marin, le réseau est constitué d’algues, de micro-organismes comme le phytoplancton et le zooplancton, d’invertébrés divers, de poissons au régime alimentaire varié ainsi que d’espèces de niveau trophique élevé, c’est-à-dire qu’ils sont les consommateurs terminaux. Ces derniers constituent une impasse pour les flux de matière à l’exception de leur prédation par l’homme. A leur mort, ils se décomposeront et se transformeront en particules pour être à nouveau en partie disponible à la consommation par d’autres organismes.  



Schéma d'un réseau trophique présent à la surface du sol
Le réseau trophique du sol est étudié à l’échelle des micro-organismes (les bactéries et les champignons) et de la méiofaune (la faune de l’ordre de 1 à 100 mm) mais inclue également certaines espèces de rongeurs ou de petits mammifères (comme la taupe !). La source initiale de matière dans ces écosystèmes est constituée des végétaux et leur débris qui forment la litière ainsi que l’humus, couche superficielle du sol constituée à la fois de débris végétaux, de matière organique (c’est-à-dire composée de carbone) morte et de particules minérales très fines.



Représentation schématique du réseau trophique au sein de la communauté des micro-organismes de la tourbière (Source: Karimi)
Dans les zones humides telles que les tourbières, on peut trouver des communautés particulières et donc des réseaux trophiques associant des organismes habituellement aquatiques comme du microphytoplancton, des cyanobactéries ou des rotifères (une sorte de microzooplancton assez mignon … mais pour en savoir un peu plus, je vous renvoie au blog de Nicobola) et des organismes terrestres comme les plantes vasculaires et les champignons. Ils mêlent des espèces de tous les groupes du vivant, les bactéries, les protozoaires, les métazoaires et les plantes. On peut voir que les relations trophiques sont très nombreuses et ne permettent pas d’établir un schéma linéaire.

Tous ces réseaux sont étudiés de différentes manières par les chercheurs. Ils sont observés sur le terrain, c’est ce qu’on appelle le travail in situ. Ce type d’approche permet d’avoir une idée des principales relations trophiques liant les organismes d’une communauté. Suite à des échantillonnages, ils sont étudiés en laboratoire ou ex situ. Ces expériences permettent de quantifier plus précisément les relations, par exemple par des mesures d’ingestion et de taux de prédation ou des techniques d’isotopie (qui utilisent une version radioactive de certaines molécules pour pouvoir les suivre et les doser), ou d’identifier des interactions trophiques difficiles à observer in situ en utilisant des méthodologies de pointe telles que la méta-génomique, c’est-à-dire le séquençage de l’ADN du contenu du tube digestif (on peut ainsi identifier toutes les espèces consommées par un organisme). Enfin la dernière approche consiste à modéliser les réseaux trophiques grâce à toutes les informations qui ont été accumulées à leur sujet. Ce type de travail permet d’avoir une idée des flux de matière entre les espèces, du taux de recyclage des molécules dans le réseau, du nombre de chemins différents qu’une molécule peut emprunter dès son entrée dans le réseau, de connaitre l’efficacité de transfert de molécule d’un consommateur à son prédateur et plein d’autres renseignements sur le fonctionnement de la communauté. D’autres informations obtenues à partir du travail de modélisation concernent la stabilité de l’écosystème (c’est-à-dire si une perturbation le modifiera facilement ou alors s’il sera résistant aux perturbations) ou la redondance au sein de la communauté (en d’autres termes, est-ce que certaines espèces exercent la même fonction ?). On peut aussi mettre en évidence certains organismes à fonctions particulières qui peuvent fortement dépendre ou fortement modifier les autres organismes du réseau trophique ; ces organismes peuvent être appelés des organismes ingénieurs dans certains cas et des bio-intégrateurs dans d’autres cas. Mais quelque soit le rôle de chaque organisme, sa participation à un réseau trophique fait de lui un élément structurant de la communauté et un rouage du fonctionnement de l’écosystème.

Vous aurez compris que pour connaître ces structures complexes que sont les réseaux trophiques, des méthodes presque aussi complexes sont utilisées, mais rien n’est trop bien pour comprendre ce qui se passe sur notre petite planète !

Tout comme les réseaux trophiques, les réseaux mutualistes ou parasites sont complexes à étudier et à comprendre. Les flux étudiés ne sont plus des molécules fournissant de l’énergie mais d’autres types (par exemple, le pollen dans le cas de réseaux mutualistes plante-pollinisateur). Tous ces types de réseaux sont indispensables au bon fonctionnement des écosystèmes et à tous les services qu’ils peuvent nous rendre.




Related Posts Plugin for WordPress, Blogger...