vendredi 4 août 2017

La fleur ancestrale, une fleur comme on n’en fait plus

Article invité écrit par Laetitia Carrive, une des auteures de l'étude scientifique dont il est question ici.

Il y a à peine quelques jours, Boris parlait ici-même de « l’abominable mystère » que constituait, pour Darwin, l’origine de la diversité des plantes à fleurs (ou angiospermes pour le nom savant). Comment, à partir d’un ancêtre commun à toutes ces plantes, a-t-on obtenu la diversité immense de formes, de structures, de couleurs, d’odeurs, que nous observons actuellement dans la nature ? En peu de temps en plus, puisque ce groupe semble apparaître brutalement dans le registre fossile et l’on trouve des fossiles assez différents d’âges proches. Quel scénario pourrait donc raconter l’histoire de ces plantes et de leur apparente radiation si soudaine ? 

Échantillon de la diversité de morphologies florales dans vingt-cinq familles de plantes à fleurs. De gauche à droite puis de haut en bas : Plantaginaceae, Iridaceae, Apiaceae, Gentianaceae, Musaceae, Melastomataceae, Passifloraceae, Orobanchaceae, Nymphaeaceae, Poaceae, Xanthorrhoeaceae (croyez-en l’orthographe !), Crassulaceae, Sapindaceae, Saxifragaceae, Arecaceae, Boraginaceae, Asparagaceae, Asteraceae, Brassicaceae, Orchidaceae, Malvaceae, Apocynaceae, Ranunculaceae, Salicaceae, Convolvulaceae. Photos : Laetitia Carrive.


Alors ici je voudrais vous parler d'une étude toute neuve (et en libre accès ici !) qui vient s'ajouter à l'édifice des réponses à cette grande question de la diversité des plantes à fleurs et à laquelle j'ai eu la chance de participer. En fait, pour pouvoir raconter une histoire, il faut bien un point de départ. Et pour pouvoir dire « les angiospermes ont produit toute cette diversité grâce à tel ou tel événement, mécanisme ou processus », ça aiderait d’avoir une idée d’à quoi elles pouvaient bien ressembler au début de leur histoire. Voici donc la question à laquelle Hervé Sauquet, l’auteur principal de cette étude, s’est attaqué : à quoi ressemblait la fleur du dernier ancêtre commun de toutes les plantes à fleurs ? 

Un tout petit détour clarificateur sur cette idée de dernier ancêtre commun, il ne s’agit pas de la première fleur, comme on peut le lire parfois, mais de la fleur la plus récente dont descendent toutes les fleurs qu’on observe aujourd’hui. Il y a certainement eu des fleurs plus anciennes, mais on ne pourra jamais être sûrs d’avoir trouvé les premières. 

Le pourquoi du comment

Comme vous vous en doutez, s’il s’agit d’un abominable mystère depuis le milieu du dix-neuvième siècle, beaucoup de botanistes ont déjà réfléchi à cette question et déjà proposé des hypothèses. Certains ont proposé que les fleurs ancestrales aient ressemblé à des magnolias (photo plus bas), soient de grandes fleurs hermaphrodites dont les parties fertiles (les étamines et les carpelles, voir photos d’explications plus bas) sont portées par un genre de cône. D’autres ont pensé qu’elles étaient plutôt petites, à sexes séparés, avec un nombre variable de tépales, d’étamines et de carpelles, comme Amborella (photo ci-dessous), une plante néocalédonienne groupe-frère de toutes les autres plantes à fleurs actuelles. Elles auraient aussi pu ressembler aux fleurs des nénuphars (Nymphaeaceae, photo ci-dessous) ou du poivre (Piperaceae, photo plus bas). Chercher la morphologie d’une fleur parmi des espèces qui ont au moins 140 millions d’années de plus est problématique, puisque cela suppose que certaines fleurs actuelles seraient « plus primitives » que d’autres. Malgré cela il y a derrière toutes ces hypothèses des arguments sérieux, aussi bien au niveau paléontologique que morphologique. Mais aucune des hypothèses principales ne s’était particulièrement dégagée et les méthodes analytiques que l’on utilisait jusque récemment butaient sur certaines questions, notamment celle de l’hermaphrodisme (des étamines et des carpelles fonctionnels dans la même fleur ou des fleurs mâles et femelles séparées) et de l’organisation de ces fleurs ancestrales (Endress & Doyle, 2009). 

De gauche à droite : Amborella trichopoda (Amborellaceae), fleurs males (source, Wikimedia Commons), Piper cubeba (Piperaceae), inflorescence (sourceWikimedia Commons), Magnolia liliflora (Magnoliaceae), fleur (photo : Laetitia Carrive), et Nymphaea alba (Nymphaeaceae), fleur (photo : Laetitia Carrive). 


Photos de deux fleurs représentant les différents organes dont cet article parle selon que la fleur est différenciée ou non. À gauche : Potentilla neumanniana (Rosaceae) et à droite Anemone pratensis (Ranunculaceae). Photos : Laetitia Carrive.

Nous sommes maintenant à une époque où l’amélioration des techniques de séquençage d’ADN, l’augmentation de la puissance des ordinateurs et de la puissance des algorithmes permettent de produire des arbres de parenté – phylogénies – pour des groupes d’organismes de plus en plus grands. Parallèlement, l’avancée des technologies de l’information et de la communication permet la création de grandes bases de données participatives, multi-utilisateurs et délocalisées, accessibles depuis n’importe quel périphérique connecté à internet. Ces deux types de données (des grandes phylogénies, des grandes bases de données) sont les ingrédients de méthodes appelées méthodes probabilistes qui permettent de déterminer statistiquement, pour un caractère donné (la symétrie des fleurs, par exemple), l’état qu’avaient le plus probablement les différents ancêtres si l’on connait les relations de parenté et l’état de ce caractère dans la diversité actuelle. Une phylogénie très complète déjà publiée (Magallón et al, 2015) a servi de point de départ à beaucoup de nouvelles analyses phylogénétiques pour pouvoir tester plusieurs hypothèses sur l’âge des angiospermes et leurs relations de parenté. Par ailleurs, pendant plusieurs années, un immense jeu de données sur la morphologie des fleurs a été développé, couvrant presque toute la diversité (86% des familles, par exemple) et assemblé par une multitude de personnes, dont j’ai fait partie. Il a fallu ensuite des centaines d’analyses et des milliers d’heures de calculs pour évaluer l’incertitude pesant sur tous les différents résultats et s’assurer d’avoir des résultats cohérents et solides. 

Aux origines : l’ancêtre 

Et sans plus attendre, voici donc la reconstitution de l’ancêtre commun des plantes à fleurs :

À gauche, le diagramme floral, qui est une représentation formelle et normalisée très utilisée (parce que tous les botanistes ne sont pas des supers dessinateurs !), qui résume la plupart des résultats sur les différents états ancestraux ; à droite, une reconstitution en 3D de cet ancêtre, qui part des résultats du papier et laisse ensuite l’imagination de l’artiste compléter ce que l’on ne sait pas ou ce que l’on n’a pas étudié. Sur cette reconstitution en 3D, par exemple, ni la forme ni la couleur des différentes parties n’ont été étudiées. En revanche la symétrie radiaire (en « étoile »), la bisexualité de la fleur, le nombre de cycles et de pièces par cycle, la position de l’ovaire etc. sont bien des résultats des analyses. Et puis comme c’est beau la 3D, vous pouvez voir ici le modèle sous toutes ces coutures. Source du diagramme, source du modèle, Sauquet et al, 2017. 


Cette fleur était donc probablement hermaphrodite, était organisée en plusieurs cycles de tépales indifférenciés et libres (séparés, non-fusionnés), avait une symétrie radiaire, plus de six étamines organisées en cycles de trois (voir photo d’explications plus haut) et qui libéraient leur pollen vers le centre de la fleur, plus de cinq carpelles portés au-dessus du réceptacle, organisés en spirale. 

Beaucoup d’articles de presse et beaucoup de commentaires disent que cette fleur ressemble à un magnolia. Je vois là-dedans un peu de la vieille et fausse idée que les magnolias sont les « plus ancestrales » des fleurs, idée qui a malheureusement la peau bien dure. Sans doutes que la forme et la couleur des tépales de cette reconstitution ressemble un peu aux magnolias mais ce ne sont que des libertés artistiques. Et d’ailleurs d’autres y ont vu une ressemblance à d’autres fleurs, bien éparpillées dans la phylogénie (elle a aussi été comparée à un lys, un nymphéa, un lotus, une rose…). 

En réalité un des résultats les plus importants de cette étude est que cette fleur ne ressemble à aucune encore présente de nos jours. Autrement dit, tous les descendants qui ont survécu jusqu’à nous ont évolué d’une manière ou d’une autre par rapport à leur ancêtre commun pour au moins quelques-uns de la vingtaine de caractères étudiés. 

Une fleur comme on n’en fait plus, mais d’où viennent toutes les suivantes…

Voilà donc le point de départ de l’histoire des angiospermes. On se demande alors immédiatement comment, de cette fleur ancestrale, on a pu aboutir à la diversité actuelle et à la morphologie des grands groupes d’angiospermes, comme par exemple les Magnoliidae, les monocotylédones (dont Boris a déjà parlé sur ce blog), les eudicotylédones qui contiennent elles-mêmes le groupe immense des Pentapetalae. 

Exemples de représentants des quatre groupes dont je viens de parler : Magnolia stellata pour les Magnoliidae, Lilium martagon pour les Monocotylédones, Meconopsis grandis pour les Eudicotylédones et Dianthus furcatus pour les Pentapetaleae. Chacune de ces espèces est un exemple de morphologie courante dans ces groupes mais en aucun cas elles ne sont censées représenter une image des ancêtres reconstruits des groupes auxquelles elles appartiennent. Photos : Laetitia Carrive.

Les analyses d’états ancestraux ont donc également été effectuées pour quatorze autres nœuds de l’arbre des plantes à fleurs et donc une reconstitution de la fleur de quatorze sous-groupes a été effectuée selon la même méthodologie qu’indiqué plus haut. Voici un schéma simplifié des diagrammes floraux probables des ancêtres de certains de ces sous-groupes replacés sur une phylogénie simplifiée :

Diagrammes floraux reconstruits à partir des résultats d’états ancestraux pour quelques nœuds-clefs de l’arbre des angiospermes, représentés sur une phylogénie résumée. Source, Sauquet et al. 2017.

Au-delà du fait que ces ancêtres en eux-mêmes apportent des éléments de réponse aux questions que l’on pourrait se poser sur l’évolution des groupes qui descendent d’eux, ils représentent aussi des étapes sur les chemins menant de l’ancêtre des angiospermes aux fleurs actuelles, des genres de passages obligés. Il devient donc possible de proposer des scénarios qui expliquent le début de l’histoire des plantes à fleurs, les chemins qui mènent de l’ancêtre aux différents grands groupes. Il suffit, par exemple, de perdre des cycles entiers pour arriver à la fleur ancestrale des Magnoliidae ; de devenir unisexué et spiral pour ressembler à Amborella ; de perdre encore plus de cycles pour aboutir aux Monocotylédones ; ou de fusionner des cycles entre eux et de différencier des pétales et des sépales pour arriver aux Pentapetalae. Ces séries de changements hypothétiques pourraient servir de points de départ à des recherches avec d’autres approches (en évolution du développement et en paléontologie notamment), qui pourraient en retour rejeter, ou compléter et affiner notre connaissance des différents chemins qu’a pris l’évolution pour aboutir à cette si grande diversité. 

Cette semaine on a réalisé un grand pas vers une résolution de l’abominable mystère et j’espère que ce morceau d’histoire des plantes à fleurs est aussi excitant à découvrir que ça a été de participer à sa construction et de voir maintenant cette image en 3D un peu partout sur les sites de news scientifiques et de vulgarisation !

Bibliographie 

Sauquet, H. et al. The ancestral flower of angiosperms and its early diversification. Nat. Commun. 8, 16047 doi: 10.1038/ncomms16047 (2017).

Endress, P. K. & Doyle, J. A. Reconstructing the ancestral angiosperm flower and its initial specializations. Am. J. Bot. 96, 22–66 (2009).

Magallón, S., Gómez-Acevedo, S., Sánchez-Reyes, L. L. & Hernández-Hernández, T. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. New Phytol. 207, 437–453 (2015).


Laetitia

Actuellement en thèse à la fac d’Orsay, je travaille aujourd’hui sur l’évolution de la fleur dans la famille du bouton d’or. Après plusieurs années à trainer dans une association naturaliste avec certains membres de l’équipe du bocal, j’ai effectué un master de systématique du muséum d’histoire naturelle. C’est lors de mes stages de master et du début de ma thèse, en travaillant avec Hervé Sauquet, que j’ai participé à l’assemblage du jeu de données morphologiques utilisé dans cette étude sur l’ancêtre des plantes à fleurs. 


vendredi 28 juillet 2017

L’abominable mystère de Darwin : aux origines des plantes à fleurs

L’autre jour, j’ai eu la chance d’assister à une conférence du botaniste Francis Hallé, sur les comparaisons entre plantes et animaux. Entre autres choses, M. Hallé est à l’origine du projet « radeau des cimes » qui vise à étudier la canopée des forêts tropicales humides par le dessus (et c’est quand même ultracool). Mais ce qui m’a interpellé, lors de cette conférence, c’est cette affirmation : les plantes à fleurs, telles que nous les connaissons, n’ont pas besoin des animaux pour vivre, évoluer, se reproduire, se nourrir. Alors, je suis d’accord que la plupart du temps, en effet, les animaux sont prédateurs des plantes – brouteurs surtout – mais il est un cas pour lequel je suis en désaccord avec M. Hallé, et c’est le cas des rapports des plantes avec leurs pollinisateurs. 

Quelques exemples des animaux capables de polliniser les plantes à fleurs. En haut, à gauche, une abeille sur une Salvia; en haut à droite, un syrphe sur un Caltha; en bas à gauche un colibri, en bas à droite une chauve souris avec une Gesneriaceae.

L’ayant fait remarquer à M. Hallé, celui-ci répondit par l’affirmation qu’à terme, si les pollinisateurs disparaissaient, certaines espèces végétales en souffriraient et s’éteindraient probablement, mais que la grande majorité des végétaux n’en serait pas ou peu affectée. Alors, peut-être que cela sera le cas dans le futur – et avec tous les soucis actuels liés à l’empoisonnement des abeilles par les pesticides utilisés en agriculture intensive, on est bien partis pour observer une réelle diminution des production agricoles où la pollinisation par ces insectes joue un rôle important – et ça personne ne peut le prédire, mais ce qui m’intéresse ici, ce n’est pas ce qui va se passer, mais ce qui s’est déroulé il y a bien longtemps… au Crétacé. Car c’est à cette époque que les premières plantes à fleurs sont apparues – selon les dernières datations et fossiles retrouvés. Ce qui est intriguant ici, c’est que dès leur apparition, les angiospermes ont subit une explosion de diversification, jusqu’à devenir le groupe de végétaux majoritaire sur Terre en termes de nombre d’espèces et d’individus. Et je me demande, les plantes à fleurs ont-elles « explosé » ainsi toutes seules, ou bien ont-elles été aidées… par leurs pollinisateurs ? On parle en effet beaucoup de coévolution entre les plantes et les insectes actuellement, mais qu’en était-il au tout début ? Quelle est la part du rôle des insectes et autres pollinisateurs dans l’évolution des plantes à fleurs ?


Au commencement…


L’apparition des plantes à fleur a posé un gros problème conceptuel à Darwin lorsqu’il a pensé sa théorie de l’évolution. En effet, dans la majorité des groupes d’êtres vivants, Darwin constate une apparition graduelle des caractères au cours de l’évolution, qui permettent de relier les groupes entre eux. Le problème, chez les plantes à fleurs, c’est qu’il n’y a,à première vue, aucune structure intermédiaire de « fleur » pouvant expliquer son apparition et le tâtonnement de l’évolution au cours du temps : on passe d’un système de reproduction sans fleurs à un système où les fleurs deviennent le moyen majoritaire de se reproduire. Cela semble totalement aberrant pour Darwin, pour qui l’évolution est graduelle et faite progressivement ; or dans le cas des plantes à fleurs, elle semble rapide et menant directement à une structure florale extrêmement constante et bien établie.

Pour expliquer cette absence de gradualisme, Darwin propose l’hypothèse suivante : les plantes à fleurs se sont développées sur un continent maintenant disparu, ce qui entraine une absence de fossiles qui auraient pu donner des exemples de morphologie intermédiaire. Par la suite, les angiospermes auraient migré sur les autres parties de la Terre, pour coloniser tous les milieux possibles.

Un scientifique contemporain de Darwin, nommé Saporta, émet quant à lui une autre hypothèse novatrice pour l’époque. Il part de l’observation que certains groupes d’insectes, actuellement diversifiés et possédant des interactions avec les plantes à fleurs, ne se retrouvent pas dans le registre fossile de l’époque pré-angiospermienne. Il propose alors que les plantes à fleurs aient co-évolué avec d’autres groupes animaux, de manière fulgurante, au Crétacé : il s’agit d’une des premières conceptualisations des variations de taux de diversification au cours de l’évolution, chose qui pour Darwin n’est au départ pas concevable – il considérait que l’évolution avait une vitesse constante pour tous les organismes, or on s’est aperçu plus tard que c’était loin d’être le cas. Darwin va se montrer très enthousiaste lorsque Saporta lui suggère cette idée, et s’empresse de la considérer comme l’hypothèse la plus plausible pour expliquer son « abominable mystère ».

Alors, peut-on considérer que l’origine des angiospermes est avant tout un « saut évolutif », sans processus graduel, ou bien manque-t-il effectivement des informations fossiles pour nous permettre d’avoir une vue d’ensemble plus exacte ?


Un scénario probable


Traditionnellement, l’apparition des plantes à fleurs sur Terre est datée du Crétacé, aux alentours de 130 millions d’années (Herendeen et al 2017), même si la datation moléculaire tend à reconstruire l’âge d’origine des angiospermes comme antérieur au Crétacé. Avant cette époque, aucune trace fossile certaine et non-ambigüe n’existe pour attester de la présence des angiospermes. De nombreuses études sont penchées sur la question de cette apparition soudaine, et il en ressort que l’explosion évolutive des plantes à fleurs puisse s’expliquer par une forte relation avec les insectes. Même si de nombreux groupes d’insectes étaient déjà présent avant l’apparition des plantes à fleurs sur Terre, on sait que lorsqu’un insecte consomme du pollen, il en est également le vecteur pour la pollinisation. C’est le cas par exemple du groupe des Coléoptères, qui étaient des pollinisateurs potentiels pour les premières plantes à graines comme les fougères à graines ou les gymnospermes. On retrouve même certains fossiles d’insectes qui possèdent du pollen stocké dans leur estomac !

Les insectes possédant des caractères strictement liés à la nutrition grâce aux fleurs, comme les longues trompes (proboscis) permettant d’aller chercher le nectar au fond de la corolle, n’apparaissent qu’à partir du Crétacé, soit en même temps que les premières angiospermes. On observe une diversification des lignées comprenant les abeilles, les guêpes, les bourdons, les syrphes, bref, tous les pollinisateurs les plus actifs à l’heure actuelle. On peut donc parler ici d’une coévolution et co-radiation* des insectes pollinisateurs et des plantes à fleurs. Mais quant à savoir qui a été le premier à entraîner la diversification de l’autre, pour le moment, on ne peut rien en dire !

*en biologie, on parle de radiation évolutive pour décrire l’apparition de nombreuses lignées sœurs sur laps de temps très court


Les fleurs ancestrales pollinisées par les insectes ?


En évolution, on se sert principalement des arbres phylogénétiques (graphiques permettant de représenter les liens de parenté entre les organismes vivants) pour tester tout un tas de scénarios évolutifs et pour reconstruire l’apparition de certains caractères. L’étude de Hu et al (2008) utilise ce principe : les chercheurs se sont basés sur la phylogénie connue des plantes à fleurs – autrement dit, les relations évolutives entre les différentes familles actuelles de plantes à fleurs – afin de modéliser l’évolution des modes de pollinisation au cours du temps. C’est seulement par la suite au cours de l’évolution que le mode de pollinisation par le vent s’est développé jusqu’à parfois devenir majoritaire dans certains groupes, alors que la pollinisation par les insectes est considérée comme ancestrale.
Figure tirée de l’article de Hu et al (2008) montrant que le mode de pollinisation par les insectes (en blanc, sur les branches) est considéré comme le plus probable pour l’ancêtre des plantes à fleurs.

Bon, vous me direz, tout ça, c’est seulement des conjectures, pas forcément vérifiables puisqu’il s’agit de choses qui ont eu lieu il y a très longtemps. Sauf que les chercheurs n’en sont pas restés là : ils ont aussi analysé des agrégats de grains de pollens, retrouvés dans les couches sédimentaires. Par comparaison avec ce que l’on trouve de nos jours, ces agrégats sont caractéristiques de la pollinisation par les insectes. En effet, les fleurs pollinisées par les insectes vont avoir tendance à produire ce type de pollen collant et visqueux. La présence de ces agrégats, dès le Crétacé moyen – âge supposé de l’apparition des plantes à fleurs – est donc un indice supplémentaire permettant de dire que les premières fleurs étaient pollinisées par les insectes.


Qui de l’insecte ou de la fleur est apparu en premier ?


Bon, en vrai dans notre cas, il faudrait dire « Qui de l’insecte ou de la fleur s’est diversifié en premier ? ». Pour revenir à notre question initiale, nous ne savons toujours pas si ce sont les insectes qui ont enclenché la diversification des plantes à fleurs en devenant pollinisateurs, ou bien le contraire, c'est-à-dire si l’apparition des plantes à fleurs a augmenté la diversification des insectes.

Regardons à présent l’aspect génétique de la chose. Chez les plantes à fleurs, il est courant d’observer des duplications du génome, encore appelé polyploidisation. Ce sont des évènements aléatoires, qui génèrent de la diversité génétique de manière ponctuelle. Souvent, ce phénomène est associé à l’apparition de nouvelles fonctions – au niveau du génome ainsi que de la morphologie. Plusieurs lignées peuvent aussi subir plusieurs évènements de polyploidisation indépendants successifs. Il n’est donc pas incongru de penser, comme l’équipe de DeBodt et al (2005) le propose, que la diversité de forme et de fonction des plantes à fleurs est potentiellement due à des évènements de duplication du génome au cours de l’évolution. La présence de la fleur telle que nous la connaissons serait donc, d’après eux et d’après de nombreuses autres études, le résultat d’une duplication des gènes. Si l’on considère cette hypothèse – étayée par les études des génomes de nombreuses plantes actuelles – alors en effet, les insectes n’auraient aucun rôle dans la diversification des plantes à fleurs au cours du Crétacé.


… et pour finir


Mais alors, les insectes ne servent à rien dans tout le processus de diversification des plantes à fleurs ? Nenni !! Au contraire, ils sont fort utiles ! Il est vrai qu’on ne peut pas être certain quant au rôle de ceux-ci dans la diversification des plantes à fleurs au Crétacé – et la question restera probablement en suspens. Par contre, chez certains groupes actuels de plantes à fleurs, plusieurs études mettent en évidence qu’il existe une forte corrélation entre un changement de pollinisateur et une diversification intense. C’est le cas des plantes du genre Aquilegia, comme décrit dans l’étude de Whittall et Hodges (2007) : l’interaction très étroite avec des pollinisateurs spécialisés est fortement corrélée à l’augmentation des taux de spéciation chez les plantes, qui est la force évolutive à l’origine de l’apparition de nouvelles espèces.


Pour conclure, on peut dire que les plantes à fleurs sont probablement apparues suite à des remaniements intenses dans le génome, mais qu’elles ont pu se diversifier grâce à l’interaction avec les insectes pollinisateurs. On sait également que les insectes ne sont pas les seuls pollinisateurs des plantes à fleurs, et que dans de nombreux groupes tropicaux, ce sont les oiseaux et les chauves-souris qui assurent la pollinisation… Si les insectes n’avaient pas existé, il est probable qu’un autre groupe d’animaux auraient pris l’avantage et se seraient diversifié conjointement avec les angiospermes. Dire que les plantes à fleurs auraient pu se débrouiller toute seules, comme le fait M. Hallé, n’est donc pas entièrement juste et nécessite de considérer les phénomènes évolutifs avec le plus grand soin, afin de ne pas faire de raccourcis pour sauter d’une observation à la conclusion, sans passer par la case de la réflexion !


Bibliographie


Friedman, W.E. The meaning of Darwin’s « abominable mystery ». 2009. American Journal of Botany. 96(1):5-21

Herendeen, P.S., Friss, E.M., Pedersen, K.R., Crane, P.R. 2017. Palaeobotanical redux: revisiting the age of the angiosperms. 3:17015

Grimaldi, D. The co-radiations of pollinating insects and angiosperms in the Cretaceous. 1999. Annals of the Missouri Botanical Garden. 86:373-406

Labandeira C.C. A paleobiologic perspective on plant-insect interactions. 2013. Current opinion in Plant Biology. 16:414-421

Hu, S, Dilcher D.L., Jarzen D.M., Taylor D.W. 2008. Early steps of angiosperm–pollinator coevolution. PNAS. 105(1):240-245

De Bodt, S., Maere S., Van de Peer, Y. 2005. Genome duplication and the origin of angiosperms. Trends in Ecology and Evolution. 20(11):591-597

Whittall, J.B., Hodges, S.A. 2007. Pollinator shifts drive increasingly long nectar spurs in columbine flowers. 447(7):706-710


Boris


lundi 24 avril 2017

Halipegus, le voyageur insolite

Voyager, découvrir de nouveaux endroits, des paysages et des climats qui ne se ressemblent pas. S’établir pour un temps et repartir à l’aventure. Un rêve pour certains, un besoin fondamental pour d’autres. Car certaines créatures naissent avec ça dans leur ADN, cette nécessité viscérale de vivre plusieurs vies.

Il était une fois une grenouille, un escargot, une demoiselle (la cousine de la libellule, pas la jeune fille !) et un ostracode. Ces quatre animaux avaient bien du mal à se trouver des similitudes. Un amphibien, un mollusque, un insecte et un crustacé, difficile de faire plus différent. Pourtant, ils partageaient un point commun, peut-être un tantinet intime et dérangeant : un parasite.
 
 
Un crustacé ostracode (Crédits : Markus Lindholm), un mollusque physidae (Crédits : Fountain Posters), un insecte odonate Ischnura verticalis (Crédits : Joltthecoat) et une grenouille Rana catesbeiana (Crédits : Esteban Alzate)


Que des parasites soient capables d’infecter une myriade d’espèces différentes n’a rien d’exceptionnel. Au contraire, les parasites généralistes, c'est-à-dire qui ne font pas les difficiles quant à l’espèce de leur hôte, sont d’autant plus susceptibles d’en trouver un rapidement. Et de perdurer. Au contraire, les parasites spécialistes, ceux qui chipotent et veulent absolument pour hôte une espèce bien précise sont complètement dépendants de cette espèce pour boucler leur cycle de vie. Et puis il y a Halipegus eccentricus. Ce ver trématode (photos plus bas) porte bien son nom. D’un côté, il est plutôt de la catégorie des généralistes, et se contente de plusieurs espèces d’hôtes différentes, du moment qu’elles se ressemblent un peu. Mais d’un autre côté, un hôte ne lui suffit pas. Ni deux. Ni trois. Car Halipegus eccentricus, vous l’aurez compris, est un des rares parasites à inclure quatre hôtes successifs dans son cycle de vie : quatre bestioles, citées plus haut, qui appartiennent en plus à des groupes on ne peut plus différents. Ça tombe bien, notre parasite aussi, sait être différent…

Tout comme les autres trématodes, Halipegus eccentricus passe par plusieurs stades pendant son cycle de vie. Tout commence dans une grenouille. Dans ses trompes d’Eustache, ce canal entre la bouche et les oreilles, pour être plus précis. C’est ici que l’on trouve généralement les adultes. Ceux-ci pondent des œufs qui sont relâchés directement dans l’environnement. Oui car en plus d’avoir réussi à s’adapter aux entrailles de quatre animaux, nos trématodes peuvent aussi se balader à l’air libre ! Du moins dans l’eau, dans le cas présent. Les œufs sont ensuite avalés par un premier hôte intermédiaire, un escargot aquatique, où ils se développent en plusieurs stades, avec multiplication asexuée des individus. En particulier, des sporocystes produisent des rédies, qui produisent ce qu’on appelle des cercaires, des larves parées pour la suite de l’aventure.

Les cercaires sont ensuite expulsées du mollusque par voie naturelle, et vont infecter un deuxième hôte intermédiaire, des crustacés ostracodes, devenant au passage des métacercaires. Pour rejoindre l’hôte définitif, c'est-à-dire l’hôte dans lequel le parasite va se reproduire (les grenouilles donc), deux possibilités s’offrent aux métacercaires. D’une part, il est possible que les crustacés ostracodes soient mangés par des têtards. Le parasite survivrait alors jusqu’à la métamorphose complète en grenouilles. Plus récemment, une autre voie a été mise en évidence. Celle-ci fait intervenir des odonates, des insectes qui ont également une larve aquatique et un adulte aérien, et qui constituent une proie pour les grenouilles. Il semble que les parasites, lorsqu’ils passent par les insectes, subissent peu de modifications. L’insecte est donc relayé au rang d’hôte paraténique, c'est-à-dire un hôte non obligatoire mais facilitant la transmission.

Cycle de vie du parasite Halipegus eccentricus.
Crédits des photos de parasite : Matthiew Bolek, Bolek et al. 2010.

Face à un parasite au cycle de vie si complexe, de nombreuses questions se posent. Notamment celle de l’évolution d’un tel cycle. Une des hypothèses est que les parasites avaient au départ des cycles plus simples, mais étaient régulièrement ingérés par accident par d’autres espèces. En réussissant à survivre à ces évènements traumatisants, les parasites auraient fini par inclure ces espèces dans leur cycle de vie. Cela signifie également que les parasites doivent faire face à un certain nombre de contraintes. D’une part, si habiter un hôte peut paraître confortable (nourriture disponible, habitat aux conditions stables, etc.), le parasite doit développer des stratégies pour éviter de se faire éjecter par le système immunitaire de l’hôte. D’autant plus que celui-ci diffère d’un hôte à l’autre ! D’autre part, ce sont quatre épisodes de transmission qui attendent le parasite, avant que celui-ci puisse accéder à la reproduction sexuée. Le succès du cycle dépend donc de nombreux facteurs, notamment la présence de tous ses hôtes dans le même environnement.

En raison de ces nombreuses contraintes, les cycles de vie des parasites comportent rarement autant d’hôtes. Ici, un des quatre hôtes du parasite (l’odonate) n’a été découvert que tardivement. Ce qui est intéressant, c’est qu’un parasite très similaire à Halipegus eccentricus, originaire d’Amérique, avait déjà été décrit dès 1978 en Europe. Halipegus ovocaudatus, selon la description originale de son cycle de vie, infecte également successivement amphibiens, mollusques, crustacés et odonates. Bizarrement, tandis que son homologue américain continue d’attirer l’attention, Halipegus ovocaudatus semble être tombé dans l’oubli… Vu la complexité de leur cycle, ils méritent pourtant tous deux l’attention des chercheurs. Ils feraient notamment de bons candidats pour être des parasites manipulateurs !


Références :


Bolek, M.G., Tracy, H.R. & Janovy, J.Jr. 2010. The role of damselflies (Odonata: Zygoptera) as paratenic hosts in the transmission of Halipegus eccentricus (Digenea: Hemiuridae) to anurans. Journal of Parasitology, 96, 724-735.

Kechemir, N. 1978. Evolution ultrastructurale du tégument d'Halipegus ovocaudatus Vulpian, 1858 au cours de son cycle biologique. Zeitschrift für Parasitenkunde, 57, 17-33.



Related Posts Plugin for WordPress, Blogger...