Affichage des articles dont le libellé est reproduction. Afficher tous les articles
Affichage des articles dont le libellé est reproduction. Afficher tous les articles

lundi 11 mai 2020

Ça pond des bébés, les poissons ?

La question de l’œuf et de la poule est résolue depuis bien longtemps. Des œufs, on en trouve partout sur l’arbre du vivant, bien avant l’apparition des oiseaux. A coquille dure ou avec une enveloppe protectrice molle, pondus déjà fécondés ou expulsés dans l’environnement en attente de la semence des mâles, aux formes et aux couleurs variables, bref, une belle omelette bien diversifiée. Certains groupes comme les mammifères ont changé de mœurs au cours de l’évolution, adoptant par exemple la gestation dans le bidon. A contrario, les œufs restent la norme pour pas mal d’organismes, et notamment les Actinoptérygiens (appelons les « poissons » pour simplifier !)


Céto, monstre de la mythologie grecque décrit comme un “gros poisson” ou une baleine (son nom est à l'origine de celui des "cétacés"). Peut-être bien une chimère à en croire son apparence… On ne saura pas si la bête pondait des œufs ou des bébés : c’est un mâle !

Chez les poissons donc, madame pond des œufs pas encore fécondés directement dans l’environnement, sur lesquels ces messieurs enverront des nuées de spermatozoïdes. Ceux-ci savent nager de toute façon, ils arriveront bien à trouver les œufs à féconder. Parents attentifs ou aux abonnés absents, l’accompagnement de la progéniture jusqu’à l’éclosion est variable selon l’espèce. Tellement variable même, que certaines espèces ont suivi l’exemple des mammifères, en adoptant la stratégie d’arrêter de pondre des œufs… et d’enfanter des jeunes bel et bien formés !

Exit les œufs ? Eh bien non, on parle plutôt d’ovoviviparité. Les ovocytes sont fécondés à l’intérieur de la femelle, qui incubera les œufs dans son corps. Ceux-ci assurent donc le nourrissage des jeunes jusqu’à l’éclosion, qui a lieu plus ou moins longtemps avant la naissance des alevins. Et qui dit fécondation interne dit… accouplement ! Pour faciliter la chose, certains poissons sont équipés d’un gonopode, une nageoire modifiée qui leur permet d’amener leur semence dans le corps de madame. Un équivalent-pénis quoi.


Gambusia affinis, un poisson de la famille des Poeciliidae dont le gonopode, sous le corps, est particulièrement bien développé.

L’ovoviviparité est particulièrement répandue dans le groupe des Poeciliidae, qui comprend notamment les guppys, particulièrement appréciés des aquariophiles. Deux nouvelles espèces de poissons ovovivipares appartenant à ce groupe viennent tout juste d’être découvertes dans les Caraïbes, sur l’île d’Hispaniola (partagée par Haïti et la République dominicaine). Limia islai et Limia mandibularis rejoignent donc la liste des 18 espèces du genre Limia qui sont endémiques de cette île, dont la moitié qui ne sont trouvées que dans un seul lac, le lac Miragoane. De tels hotspots de biodiversité soulignent l’importance d’études scientifiques locales dans des pays où l’expertise scientifique et naturaliste reste à développer. Il ne s’agirait pas que des espèces aussi intrigantes disparaissent avant même qu’on ait connaissance de leur existence…


Références


La majorité des auteurs de ces deux études sont originaires de différents pays des Caraïbes, et leurs travaux sont soutenus par l’association Caribaea Initiative, qui œuvre pour le développement d’une expertise locale d'étude et de protection de la biodiversité des Caraïbes.



jeudi 16 avril 2015

C’est pas la taille qui compte : une histoire de petits vers méconnus

Au cours de mes recherches pour ma thèse, j’ai été amené à parcourir la littérature d’un certain nombre de groupes d’animaux. Ceux qui ont déjà lu certains de mes articles doivent bien avoir compris que ces animaux sont toujours bizarres ou méconnus. Dernièrement je suis tombé en fascination pour de tous petits animaux, les gastrotriches dont je vous ai parlé ici (histoire de vers microscopiques) ou là (les artistes minuscules). Certains gastrotriches ont plus spécialement attiré mon attention, un groupe appelé les Chaetonotida, ou chétonotides (prononcer kétonotides). Ce groupe est extrêmement commun. Pour l’anecdote le premier que j’ai vu (au microscope) je l’ai trouvé dans mon jardin en île de France. Ils vivent dans les milieux aquatiques ou humides et peuvent être extrêmement nombreux. La plupart des chétonotides se retrouve surtout dans les eaux douces, parfois en très grande concentration. Ils peuvent être minuscules, moins d’un dixième de millimètres pour certains, et sont souvent ornementés d’écailles et d’épines très complexes. Mais malgré leur omniprésence ils sont très peu étudiés. On ne connait quasiment rien de leurs écologie ou cycle de vie. La plupart des travaux sur ces animaux se sont limités à des descriptions taxonomiques (descriptions d’espèces) où à des travaux écologiques portant toujours sur la même espèce (Lepidodermella squamata) ou sur « Chaetonotus sp. », ce qui désigne plus ou moins la moitié des chétonotides… Heureusement quelques chercheurs se sont quand même penchés sur la biologie de ces animaux pas faciles à étudier (un dixième de millimètre, quand même, c’est difficile à manipuler !). Et comme on peut toujours s’y attendre avec les trucs peu étudiés, ils nous révèlent plein d’histoires rigolotes. 

Lepidodermella, le chétonotide « modèle ». Remarquez l’agencement des écailles ! (Source: gastrotriche top-modèle


Alors déjà un gastrotriche chétonotide, c’est quoi, et comment ça vit ? Tous les gastrotriches ont une ciliation ventrale, des espèces de « poils » cellulaires qui, quand ils battent à l’unisson, créent un mouvement. C’est d’ailleurs pour ça qu’on les appelle des gastrotriches, du grecque « gastro » : ventre et « tricho » : poil. Les gastrotriches utilisent donc cette ciliation ventrale pour se déplacer en rampant au fond de l’eau, ou parfois, quand le « cœur » (inexistant) leur en dit, nager. Mais les gastrotriches ne bougent pas seulement grâce à leurs cils et ont aussi des muscles (malgré leur taille riquiqui). Leurs muscles les plus puissants sont présents dans leur pharynx, qui est un tube, et quand les muscles du pharynx vont se contracter, le volume à l’intérieur du pharynx va augmenter et l’eau va être aspirée. Ainsi ils vont se nourrir en « suçant » (aspirant) tout ce qui leur plait et qu’ils auront préalablement goûté avec leurs cils sensoriels faciaux. Jusque-là rien de bien impressionnant me direz-vous, vous aussi vous pouvez aspirer des trucs. Oui mais à ces dimensions l’eau ne se comporte plus comme le liquide que l’on connait mais plutôt comme de la mélasse super épaisse. Maintenant ouvrez un pot de miel, mettez-y la bouche, et aspirez ça comme vous le feriez avec un flan. Si vous y arrivez c’est probablement que vous avez des super pouvoirs de gastrotriches (essayez de nager avec vos poils maintenant pour confirmer ça). De cette manière nos minuscules chétonotides peuvent aspirer le contenu des cellules végétales qu’ils trouvent, voici une vidéo parlante :


Remarquez la précision et la « puissance » avec laquelle le gastrotriche absorbe sa nourriture. Si ce ne sont pas de vrais petits monstres…


Ok, une manière originale de se nourrir. Enfin pas tant que ça, des animaux suceurs avec un pharynx musculeux, il y en a beaucoup, je ne vais pas rentrer dans les détails (Nielsen 2003). Aussi, il semble que parfois les chétonotides aspirent une cellule sans la casser et se retrouvent avec une cellule vivante d’une euglène (un organisme unicellulaire commun en eau douce) qui se balade joyeusement dans leur intestin. Seulement voilà, un gastrotriche c’est petit, et une euglène, pour un truc qui n’est constitué que d’une cellule c’est gros, et du coup on a des gastrotriches à l’air pas très finnot qui se retrouvent avec une (voire même plusieurs !) euglène qui fait à peu près un dixième de leur taille dans le bide. L’euglène en plus a l’air de bien profiter de la vie dans cet environnement et ne se prive pas de mouvements. C’est un peu comme si vous promeniez avec un chat agité dans le ventre. Ces observations ont été faites très récemment et publiées seulement cette année, en 2015 (Kisielewska et al. 2015). Autant dire qu’au vu des connaissances faibles qu’on a des gastrotriches et des euglènes, ben on a encore moins idée de comment s’organise cette association. L’euglène est-elle un parasite ? Est-ce juste une « erreur » du gastrotriche (bien que ça ait été observé plusieurs fois) ? Simplement une proie longue à digérer ? Ou est-ce que les gastrotriches en tirent un quelconque avantage ? Aucune réponse n’est encore possible, et ce mystère reste à éclaircir.

La présence de trois euglènes encombrantes vivantes dans l’intestin d’un gastrotriche ! Source :  Kisielewska et al 2015.

Des mystères, des mystères, plein de mystères ! Mais ce n’est pas fini ! Quelles autres histoires les gastrotriches nous réservent-ils ? Au fond des eaux douces, dans la faune microscopique, il y a toute une clique de compères qui se balade. Un des grands compagnons du gastrotriche, c’est le rotifère. Plus précisément le bdelloïde. Sophie en a parlé ici (minuscules super-héroïnes) , et elle vous a expliqué que depuis plusieurs millions d’années, le bdelloïde se reproduit sans sexe. On n’a que des femelles clonales et aucun mâle ne semble exister. D’une les mâles n’ont jamais été trouvés, mais aussi, récemment, l’étude du génome d’un bdelloïde montre qu’il n’y a aucune trace de reproduction sexuée. Considérant la diversité du groupe et son âge évolutif, c’est un cas unique chez les animaux, les groupes à reproduction strictement asexuée sont souvent plus restreints que les bdelloïdes, qui sont omniprésents sur la Terre entière. Au même titre, pendant très longtemps, les mâles n’ont jamais été trouvés chez les chétonotides, et c’était écrit noir sur blanc dans les bouquins universitaires, là où l’on trouve les connaissances souvent gravées dans le marbre : « les chétonotides ne présentent que des femelles et se reproduisent de manière assexuée » (Hyman 1951). Après tout pourquoi pas, s’ils vivent dans le même milieu que les bdelloïdes, on peut penser que les même causes entraînent les même conséquences (mais il ne faut jamais penser ça en biologie évolutive, voyez la suite).

C’était sans compter sur nos faibles connaissances sur ce groupe. Car il y a de cela déjà quelques décennies, dans les années 80, des mâles ont été trouvés chez les chétonotides. Des mâles ? Ouais, enfin des mâles/femelles, des individus hermaphrodites, comme l’escargot. Des gastrotriches avec à la fois des œufs et du sperme. Mais alors comment se fait-il que les testicules des chétonotides nous aient échappés pendant plus de cent ans ? C’est que ces, petits, petits cachotiers n’en n’ont pas en permanence, et après cette découverte, leur cycle de vie a enfin pu être élucidé. L’espèce la plus étudiée est Lepidodermella squamata, un gastrotriche aux délicates écailles, pourtant élevé en culture pendant des décennies. Cependant un auteur fut surpris un jour de trouver des testicules dans ces animaux. Et après quelques études, il résolu enfin le mystère. Chaque Lepidodermella naît femelle. Puis elle va invariablement déposer quatre œufs issus d’une reproduction asexuée. Une fois cette tâche accomplie, madame va devenir un monsieur (tout en restant madame en même temps, vous me suivez ?) et va se voir pousser des testicules tout en gardant des œufs. La modalité de reproduction est encore inconnue (est-ce que les animaux s’accouplent ? Se fécondent eux même ? Qui sait, ce sperme ne sert peut-être à rien) ? Alors les gens ont commencé à se douter qu’il n’y avait pas que Lepidodermella qui faisait ça, à cause d’un certain nombre de mentions dans la littérature à propos de testicules dégénérés chez d’autres chétonotides. Puis un type, en 2001 (Weiss 2001), relativement récemment donc, a enfin décidé de chercher sérieusement des testicules chez les autres chétonotides, et Eurêka ! Il en a toujours trouvé chez toutes les espèces étudiées ! En gros c’était là, sous nos yeux, fallait juste chercher… Il y a de cela 15 ans, avant que cet auteur ne cherche vraiment des organes mâles, on n’avait donc aucune idée du cycle de vie de ces animaux omniprésents dans les milieux d’eau douce… Et permettez-moi de rajouter que ce mode de reproduction (parthénogenèse/reproduction asexuée obligatoire suivie d’un hermaphrodisme simultané c'est-à-dire mâle et femelle en même temps), semble être unique chez les animaux !

Ici la preuve de la présence simultanée de sperme et d’œufs chez un gastrotriche chétonotide (les flèches rouges indiquent le sperme et les bleues les œufs). Source : Weiss 2001.

Donc, les chétonotides sont petits et difficiles à étudier, si petits qu’on n’a compris leur sexualité que relativement tard. Soit. Mais à part le mode de vie d’un type d’organismes, il est bon de connaître la diversité du groupe auquel il appartient. Comme je vous l’ai dit les chétonotides possèdent de minuscules, nombreuses et parfois complexes écailles. Elles ne sont pas seulement complexes dans leur forme mais aussi dans leur organisation. Toutes les écailles ne sont pas identiques, et on va retrouver des écailles différentes sur le corps de l’animal. C’est important car cette organisation complexe des écailles ainsi que leur diversité, est le moyen le plus utile pour les scientifiques de reconnaître les différentes espèces de chétonotides. Jusqu’ici tout va bien, et avec un bon microscope il n’est pas difficile d’identifier un chétonotide. Seulement un problème a été soulevé lors d’une autre étude sur Lepidodermella (notre chétonotide « modèle »). En effet, la comparaison d’animaux clones (dont on était sûr qu’ils n’étaient pas le produit d’une reproduction sexuée) a montré qu’entre différents clones, on pouvait trouver de la variation dans l’organisation des écailles ! « Oui bon, y’a des variations entre jumeaux et c’est pas un drame » me direz-vous, mais chez Lepidodermella, le nombre de cellules est fixe. Pas de variation dans l’arrangement cellulaire possible donc ! C’est toujours le même nombre et arrangement d’un individu à l’autre.  Pire encore, cette variation entre écailles se retrouve aussi entre chaque côté de l’animal ! En gros cela signifie qu’il y a parfois une asymétrie entre les écailles d’un côté et de l’autre. Ce problème n’est pas anodin car les chétonotides sont déjà un « bordel  taxonomique ». En effet, une étude récente a montré que le genre Chaetonotus était tellement mal défini qu’on le retrouvait partout dans l’arbre évolutif des chétonotides (Kånneby et al. 2012). Pour faire simple, tout comme les poissons, « Chaetonotus n’existe pas ». Alors imaginez quelle dimension prend ce problème si on remarque que toute notre classification se basait sur un caractère qui varie entre individus génétiquement identiques… On peut apercevoir un énorme casse-tête taxonomique pointer le bout de son nez. Et pour des organismes si nombreux et omniprésents, ce n’est pas un problème anodin.

Illustration de l’asymétrie que l’on peut trouver sur les écailles ventrales de Lepidodermella au niveau des flèches. Source Amato et Weiss 1982.

Après ce petit tour des mystères qu’on trouve chez nos petits et adorables chétonotides, on comprend l’ampleur notre ignorance concernant la biodiversité qui nous entoure, et c’est bien la raison pour laquelle le sujet des « vers étranges » est intarissable. C’est là que se trouvent les derniers territoires inexplorés de la zoologie, et ils sont vastes. Ici c’était un aperçu très rapide de quelques problèmes qui existent avec les chétonotides, mais j’ai passé sous silence la moitié des gastrotriches : les « macrodasyides » ! Alors au final la question que l’on peut se poser est : est-ce parce qu’on ne les étudie pas que ces organismes nous cachent tant de mystères et qu’ils semblent si uniques, ou est-ce à l’inverse parce qu’ils sont uniques et si étranges, et donc qu’ils sont difficiles à étudier, qu’on ne les connait pas ? Comme souvent en biologie, la réponse se trouve probablement quelque part entre les deux.

Pour finir deux photos de jolis gastrotriches chétonotides semi planctoniques un peu moins communs que ceux qu’on a l’habitude de voir, parce que les photos de publis en noir et blanc, ben c’est pas joli ! Donc en haut Neogossea voigti et en bas, Stylochaeta fusiformis. Si vous voulez d’autres photos allez voir ici, sur le site de cet habile photographe : photographe patient.


Et la bibliographie :

Sur le pharynx suceur (notamment chez les animaux en général) :

-Nielsen C. 2013. The triradiate sucking pharynx in animal phylogeny. Invertebrate Zoology, 132(1), 1-13.

Sur les Euglènes :

-Kisielewska G., Kolicka M. et Zawierucha K. 2015. Prey or parasite? The first observations of live Euglenida in the intestine of Gastrotricha. European Journal of Protistology 51, 138–141.

Sur les Gastrotriches hermaphrodites :

-Hummon M. R. 1986. Reproduction and Sexual Development in a Fresh-Water Gastrotrich. 4. Life History Traits and the Possibility of Sexual Reproduction. Transactions of the American Microscopical Society,  105(2), 97-109.

-Hyman L. H. 1951. The Invertebrates: Acanthocephala, Aschelminthes and Entoprocta, The pseudocoelomate Bilateria, Volume II. 

-Weiss M. J. 2001. Widespread Hermaphroditism in Freshwater Gastrotrichs. Invertebrate Biology, 120(4),308-341.

Sur les écailles et la taxonomie tordue :

-Amato A. J. et Weiss M. R. 1982. Developmental Flexibility in the Cuticular Pattern of a Cell-Constant Organism, Lepidodermella squammata (Gastrotricha). Transactions of the American Microscopical Society, 101(3), 229-240.

-Kånneby T., Todaro M. A. et Jondelius U. 2012. Phylogeny of Chaetonotidae and other Paucitubulatina (Gastrotricha: Chaetonotida) and the colonization of aquatic ecosystems. Zoologica scripta, 42(1), 88–105.




lundi 9 février 2015

Ceux qui promenaient des mantes en laisse

Si les chimistes sont souvent dépeints par l’imaginaire collectif comme des savants fous aux allures excentriques, les biologistes ne sont pas non plus en reste quand il s’agit de faire preuve d’extravagance et de déployer leur plus grande imagination pour monter des expériences nouvelles. Ainsi, c’est tout naturellement qu’une équipe argentine vient de publier un article où il est question de mantes religieuses, droguées au dioxyde de carbone, et amenées au bout d’une laisse auprès de congénères passablement cannibales pour titiller leur agressivité…

Depuis toujours, les mantes ont passionné les gens pour la fâcheuse tendance des femelles à dévorer monsieur vivant au milieu même des ébats. Ce cannibalisme sexuel est bien sûr également une grande source d’inspiration chez les scientifiques : pourquoi la sélection naturelle reste-t-elle si stoïque face au tragique destin de ces pauvres mâles ? Ce n’est tout de même pas très pratique de se faire arracher la tête pour les futures reproductions… 


Chez les mantes, la femelle entreprend de dévorer son partenaire dans 30% des accouplements. Se faire arracher la tête n’empêche pas le corps du mâle de continuer le transfert de sperme, ce qui explique en partie que ce comportement n’ait pas été balayé par la sélection naturelle (Source)

Les études montrent que les mâles se font croquer à peu près une fois sur trois. Pas négligeable donc. Certes, il pourrait y avoir des avantages sélectifs pour le mâle à se faire manger, notamment un apport nutritif fichtrement conséquent pour la femelle, et donc pour ses futures jeunes. En dépit de cela, les mâles ne sont pas tout à fait résignés à donner de leur chair, surtout quand ils peuvent espérer s’accoupler avec une autre femelle avant de rendre l’âme, et ils tentent quand même quelques subterfuges pour contrer l’appétit sexuel de madame.

Pas fous, les mâles vont montrer une préférence très nette pour des femelles en bonne condition corporelle. Autrement dit, des femelles qui ne paraissent pas avoir jeûné depuis des jours…  Ils vont aussi être plus attirés par des femelles qu’ils auront vues au préalable croquer une proie. Il y a même eu des observations de mâles qui, l’air de rien, se glissent discrètement sur la femelle au moment où celle-ci est en plein repas.

Une autre stratégie du mâle, outre préférer les femelles qui n’ont pas besoin d’un casse-croute, pourrait être d’éviter les dames trop agressives. C’est sur cette hypothèse que s’est penchée l’équipe de chercheurs argentins. 


Chez les mantes, les partenaires se prennent la tête de manière littérale et bien plus radicale que chez nous (Source)

Le protocole est assez original. Comment faire en sorte qu’un mâle puisse exprimer une préférence devant le niveau d’agressivité de la femelle ? Plusieurs ingrédients sont nécessaires : un mâle bien sûr, deux femelles dont l’une doit être plus agressive que l’autre, et un évènement permettant au mâle de juger de l’agressivité des prétendantes. Tout ça est beaucoup plus facile à dire qu’à faire, surtout si on veut éviter que les femelles ne croquent tout le monde.

Première étape : choisir des femelles qui se ressemblent. On ne voudrait pas que le mâle mise sur la plus petite, ou la plus maigre… Les mantes sont alors droguées au dioxyde de carbone, le temps de les mesurer et les peser en toute tranquillité, et elles sont rangées par paires. Deuxième étape, présenter les femelles au mâle en faisant en sorte que seul ce dernier puisse choisir sa partenaire. Les deux prétendantes se retrouvent donc attachées à chaque coin du dispositif par une tige scotchée derrière leur tête. Le mâle, lui, est libre en face d’elles, et peut choisir de s’approcher de l’une ou de l’autre. Troisième étape : faire en sorte qu’une des deux femelles exprime des comportements agressifs, mais pas l’autre. Et le tout devant le mâle, mais sans le croquer. Un deuxième mâle est donc introduit dans le dispositif : il servira de victime. Attaché lui aussi au bout d’une laisse, il est amené par les chercheurs successivement à côté de chaque femelle. Pour l’agressivité, les deux femelles ont été affamées pendant 5 jours. Elles sont au taquet. Mais pour que l’une des deux reste sage ? Un petit coup de CO2 supplémentaire, et elle se tiendra tranquille. Notre mâle focal a donc devant lui une femelle affamée mais amorphe, et une autre qui tente tant bien que mal de happer ce bout de viande sur pattes, accessoirement un de ses congénères, qui est tracté près d’elle de manière régulière. Tout ça peut paraitre bien barbare, mais les chercheurs prennent soin de signaler que les individus ont été habitués à leur longe avant l’expérience, et qu’ils ont pris garde à ce que les mâles victimes ne se fassent pas attraper par les femelles (précision est tout de même faite que le mâle s’est fait attraper les antennes plusieurs fois, ce qui n’est pas du tout traumatisant…). 


Dispositif expérimental, d'après Scardamaglia et al. (2015). Le mâle focal peut s'orienter librement vers l'une des deux femelles, stimulées par le mâle "victime".

Après ce petit manège pour montrer au mâle focal qu’une femelle est fichtrement agressive par rapport à l’autre, les chercheurs laissent donc le mâle seul avec ses prétendantes, pour qu’il puisse réfléchir et prendre sa décision. Et vu l’enjeu (éviter la décapitation…), la décision peut être longue… Très longue… Et le test peut ainsi s’étendre sur une période de 11h. Heureusement, des caméras capturent le tout, question d’intimité pour les bestioles : pas question d’interférer dans leur comportement. Et puis c’est souvent plus pratique pour les chercheurs, surtout pour des longues expériences.

Les mantes ne forment pas d’associations en dehors de la reproduction. Pour la femelle, le mâle ne constitue qu’une réserve de sperme, et parfois de viande, qui vient volontairement à sa rencontre pour lui offrir tout ça ! (Source)

Alors, suicidaires ces mâles ? Eh bien non, à l’unanimité, et de manière très nette, les mâles vont passer un temps considérablement plus long à tenter d’approcher la femelle non-agressive. Un résultat qui peut nous paraître absolument évident mais qui demandait pourtant bien vérification : en dépit du coût évident à perdre la tête, un partenaire agressif peut être avantageux. Cela pourrait être preuve de bonne santé (il faut de l’énergie pour être agressif !). Et puis rappelez-vous une expérience dont je vous avais parlé (par ici) : chez une espèce de cichlidé dont la défense du territoire et de la progéniture est nécessaire, et malgré un cannibalisme fréquemment observé même au sein du couple, la femelle (chacun son tour de choisir) va préférer les partenaires les plus agressifs. Un exemple qui est loin de convaincre nos mâles mantes, chez qui les femelles se contentent de pondre sans apporter le moindre soin parental par la suite. En revanche, certains mâles d’insectes et araignées sont connus pour offrir à leur dame un cadeau nuptial, une proie pour amadouer la femelle. L’hypothèse a été plusieurs fois évoquée que, dans certains cas, une telle offrande pourrait protéger les mâles face à des femelles potentiellement cannibales, en reportant leur appétit sur une proie plutôt que leur propre tête !


Bibliographie 

 

Scardamaglia, R.C., Fosacheca, S. & Pompolio, L. 2015. Sexual conflict in a sexually cannibalistic praying mantid: males prefer low-risk females. Animal Behaviour, 99, 9-14.



Sophie Labaude

samedi 31 janvier 2015

Vie courte ou longue: question de stratégie?

Une histoire de vie est le récit des évènements qui ponctuent l’existence d’un organisme, ainsi que leur place dans le temps, de sa naissance à sa mort. La très grande diversité des histoires de vie, illustrée par exemple par des durées de vie allant de quelques heures pour certaines bactéries, quelques jours chez certains insectes, à quelques milliers d’années pour certains arbres, est une source de nombreuses questions en biologie évolutive. Il existe également une variabilité au sein des espèces entre les populations ou même entre individus au sein des populations.

Espérance de vie relative des organismes (source: Biologie Evolutive de Thomas et ses collaborateurs)

Cette histoire est le fruit d’évènements fortuits et aussi d’un certain nombre de décisions structurant cette histoire. Les décisions sont les priorités données par les organismes, à différents stades de leur vie, à leurs traits d’histoire de vie. Les traits d’histoire de vie sont les traits biologiques qui contribuent à la valeur sélective (appelée fitness en anglais, cette expression fait référence à la contribution moyenne d’un organisme aux générations ultérieures) et en particulier à ses composantes fondamentales que sont la survie et la reproduction. Ses composantes sont illustrées par plusieurs caractéristiques des organismes. La survie pourra être vue comme l’espérance de vie moyenne à la naissance ou à maturité, ou encore la durée de vie maximale. Et pour avoir une idée de la capacité de reproduction, on peut utiliser l’âge à maturité, le nombre d’évènements de reproduction, le nombre de petits lors de la première reproduction, le nombre d’évènements de reproduction par saison, le nombre de petits qui survivent, etc. La taille est souvent un autre trait essentiel à prendre en compte, comme par exemple, la taille à la naissance, la taille à maturité, la taille adulte, ou encore la taille maximale. Les traits d’histoire de vie peuvent être très variables d’une espèce à l’autre malgré leur proximité phylogénétique.
La variabilité de n’importe quel trait d’histoire de vie, comme la durée de vie par exemple, peut être à l’origine de l’adaptation plus ou moins forte d’une population ou d’une espèce à son environnement, allant même jusqu’à leur évolution suite à un changement assez important dans les conditions de vie des organismes. Chez les guppies (encore un « poisson » !), la variabilité observée actuellement pour certains traits est telle que la vitesse d’évolution est 7 fois plus rapide aujourd’hui que chez les organismes fossiles apparentés.

Les guppies d'aujourd'hui c'est plus ce que c'étaient!!! (source photo)

Il y a quelques minutes, je vous parlais de décisions qui allaient structurer l’histoire de vie. Ces décisions répondent à des questions du type « Dois-je commencer à me reproduire ? Quelle ressource énergétique dois-je investir dans cet évènement de reproduction ? A combien de petits dois-je donner naissance ? ». Les réponses à ces questions dépendent d’un vaste jeu de contraintes physiologiques et phylogénétiques (c’est-à-dire en lien avec le fonctionnement de l’organisme et avec son origine évolutive), dont la principale est la limitation des ressources disponibles pour un organisme.  Ça signifie que le choix d’avantager tel ou tel trait d’histoire de vie est lié au partage de la ressource entre différents traits : on parle alors d’allocation des ressources. Par exemple, un organisme qui va utiliser toute son énergie pour faire beaucoup de petits, aura alors moins de « force » pour survivre très longtemps. Une autre contrainte essentielle est celle de l’âge des individus, car un juvénile, un adulte et un organisme vieillissant ne feront pas les mêmes choix concernant leur survie. Un adulte qui a déjà engendré plusieurs fois des jeunes a moins d’intérêt à se reproduire encore qu’un individu tout juste mature. Avec toutes les contraintes qui se présentent à eux, dont la quantité de ressources, la phylogénie et l’âge font partie, les organismes et les espèces ont développé des stratégies pour croitre et se maintenir.

Les stratégies r-K
Si on peut imaginer une infinité de combinaison de traits d’histoire de vie, les études expérimentales montrent qu’en fait la diversité des combinaisons est limitée, à cause des processus évolutifs qui ont affecté les espèces pendant de nombreuses générations. Les chercheurs se sont rendu compte que certains traits vont avoir une forte tendance à varier simultanément. A la suite des travaux de Stearns dans les années 70, ces co-variations de traits d’histoire de vie ont été appelées stratégies biodémographiques parce que ça concerne les traits biologiques (la taille ou la couleur par exemple) et les traits démographiques (la survie et la reproduction). Un des principaux axes de variation des stratégies biodémographiques est l’axe « r-K ». Ces stratégies se distinguent principalement par le taux de renouvellement des espèces ou temps de génération. Le taux de renouvellement des espèces correspond à l’efficacité d’une espèce à se maintenir en produisant une génération supplémentaire. Le temps de génération est l’extension de cette notion aux communautés, aux populations ou aux individus et correspond au temps nécessaire à un organisme qui vient de naître pour créer une nouvelle génération. A un des extrêmes de notre axe des stratégies, il y a les rapides, nommés stratégistes r. Ce sont les organismes qui vont être matures précocement et se reproduire pour la première fois à un âge jeune. On leur attribue aussi une fertilité particulièrement débordante. Point négatif, leur survie va en pâtir. Etant donné un investissement important des ressources dans la création de la génération suivante, il reste peu de réserves énergétiques pour assurer la survie de l’individu reproducteur très longtemps. A l’autre bout de la lorgnette des stratégies, on trouve les lents, qui appartiennent au groupe des stratégistes K. Ceux-là ne vont être aptes à se reproduire qu’assez tardivement. Ils vont produire des petits avec beaucoup de parcimonie mais contrairement aux stratégistes r, ils ont une espérance de vie plus importante, étant donné une dépense énergétique plus faible dans la reproduction. La plupart des taxons sont sensibles à cet axe de stratégies biodémographiques et le temps de génération d’une espèce est un bon indicateur de sa position sur l’axe. Et pour une position donnée sur le gradient r-K, différentes stratégies démographiques sont encore possibles concernant l’investissement dans la première reproduction, la durée de la vie reproductive, la qualité et la quantité des progénitures (la taille et le nombre), etc.
Des chercheurs ont aussi noté que pour un type d’organismes (les plantes, les insectes, les oiseaux, les mammifères, les « reptiles », les « poissons »), la position le long du gradient r-K est fortement lié à la taille de l’espèce. Les espèces à fort taux de renouvellement (ou temps de génération court) sont presque toujours de plus petite taille que les espèces à faible taux de renouvellement (ou temps de génération long). Cette contrainte de taille dans les stratégies démographiques est appelée l’allométrie.  

Maintenant que vous connaissez la théorie, on va voir ce qu’il en est dans la pratique. 
Chez les oiseaux, le vautour moine s’oppose au moineau domestique (vous avez jusqu’à la fin du paragraphe pour deviner qui joue la stratégie r et qui joue la stratégie K).
Je vous laisse deviner qui est le vautour et qui est le moineau... si vous n'êtes pas inspiré, la réponse en chiffres est un peu plus bas!

Le premier est l’un des plus grands oiseaux connus avec une envergure allant de 2,65m à 2,85m et une hauteur de 100 à 110 cm. L’adulte est sexuellement mature vers 4 ou 5 ans et même si certains couples se forment à l’âge de deux ans, il est très rare de voir une reproduction couronnée de succès avant l’âge de 4 ans. L’unique œuf pondu par la femelle entre février et mars est couvé alternativement par le mâle et la femelle pendant 55 jours. Le poussin sort du nid au bout de 110 à 120 jours mais il sera encore nourri par les parents quelques semaines. L’espérance de vie moyenne du vautour moine est de 30 à 40 ans, voire plus dans certains cas. Le moineau domestique, lui, a une envergure de 32cm et une hauteur de 16 cm en moyenne. Il est sexuellement mature dès la saison de reproduction suivant sa naissance et peut parfois tenter de se reproduire dès ce moment. A chaque évènement de reproduction, la femelle pond trois à huit œufs qui seront couvés de 14 à 17 jours. Vingt jours après l’éclosion, les jeunes peuvent quitter le nid permettant ainsi aux parents de nicher à nouveau. Trois à quatre évènements de reproduction ont lieu à chaque saison de reproduction. Le moineau domestique a une durée de vie maximale de 13 ans. Si vous n’avez pas encore trouvé qui a adopté quelle stratégie, voilà la réponse : le vautour a un cycle de vie beaucoup plus lent, il est mature tardivement, et survit plus longuement, il est donc stratégiste K. En revanche, le moineau est mature très rapidement et produit de multiples descendants à chaque saison de reproduction tout en ayant une espérance de vie plus courte, il est donc stratégiste r.  


Chez les mammifères, les deux extrêmes de l’axe r-K sont la souris et la baleine bleue.
La baleine et la souris... ça pourrait être un titre pour une fable de La Fontaine. Si si, je vous promets, elle est là la souris. Là... en tout petit... et bien oui, mis à l'échelle de la baleine, ça ressemble à rien la souris. Finalement, elle fait plus beaucoup peur à personne.

La souris adulte mesure entre 7,5 et 10 cm pour un poids qui va de 21g à 60g pour les plus grosses femelles. La maturité sexuelle est atteinte vers l’âge de cinq à six semaines (45 jours pour les mâles et 40 à 45 jours pour les femelles). Une femelle peut mettre au monde de 5 à 15 portées par an avec 5 à 12 petits par portée (18 au maximum). La durée de gestation est de 18 à 21 jours et la femelle peut entamer une nouvelle gestation toutes les six semaines. Le sevrage des petits se fait au bout de trois semaines d’allaitement. La souris commune a une espérance de vie de deux à trois ans maximum. En parallèle la baleine bleue mesure entre 20 et 30m et pèse 170 tonnes en moyenne. La maturité sexuelle est atteinte entre 5 et 15 ans et les femelles donnent naissance à un baleineau un fois tous les deux à trois ans après une gestation de dix à douze mois. Le sevrage a lieu après sept à neuf mois. La longévité minimale estimée des baleines est de 80 ans dans des conditions naturelles bien que le plus long enregistrement soit de 34 ans seulement. Avec toutes ces infos et l’exemple sur les oiseaux, c’est un jeu d’enfant maintenant de savoir qui se situe où sur l’axe r-K ! Comme le vautour, la baleine a un cycle de développement beaucoup plus lent et investit énormément dans la survie, elle emploie donc la stratégie K alors que la souris qui produit énormément de descendants très rapidement adopte la stratégie r.

Une classification pas toujours aussi nette !
Les exemples que je viens de vous donner sont flagrants car extrêmes. Mais ne soyez pas dupes, il n’est pas toujours aussi facile de classer les espèces dans l’une ou l’autre des catégories. Par exemple, le chêne, qui est mature vers 40 ans et a une espérance de vie moyenne très très longue – entre 400 et 500 ans, voire même jusqu’à 800 ans – va produire des centaines de descendants chaque année.

Nos bons vieux chênes européens sont parmi les plus vieux du monde, ici c'est en Suisse (source photo)

Où le classeriez-vous si vous étiez un expert du domaine ? Généralement les arbres et les « poissons » produisent et dispersent des quantités énormes de rejetons, dont très peu pourront effectivement se reproduire sans que cela soit incompatible avec l'existence et même la domination locale d'individus très âgés. La stabilité de l’environnement reste très relative et n’est pas perçue de la même façon selon le stade de développement : l'espace où s'exerce l'approvisionnement en ressources et la vie d'un arbre peut être stable (les quelques mètres cubes de volume où se sont développés les racines) alors que l'espace où s'exerce sa fonction reproductive peut s’avérer être beaucoup plus étendu et beaucoup plus aléatoire (une forêt entière, voire plus). Comme la réponse n’est pas des plus évidentes, les espèces peuvent être comparées entre elles et on préférera parler des organismes relativement les uns aux autres. Le temps nécessaire au développement et à l’aboutissement d’un cycle de vie est tout relatif à l’espèce. Un très bon exemple, qui va vous changer de toutes les bêtes classiques dont j’ai parlé, est les gastrotriches d’eau douce.

Vous vous souvenez des gastrotriches? C'est Nicobola qui vous en parlait ici. (source photo)

Ils sont classés comme ayant une stratégie r à cause d’une production allant jusqu’à 1 oeuf tous les deux jours et une vie longue de deux à trois semaines seulement. Mais ils ne produisent qu’un œuf à la fois (comme les baleines du coup !). L’impression qu’ils se reproduisent beaucoup et rapidement est liée à leur taille microscopique (100µm). Mais si on rapportait la production à la surface et à la longévité du spécimen (on estimerait alors un flux de transfert d’énergie !!!), on se rendrait peut-être compte que ces petites bestioles investissent à peu près autant d’énergie dans la reproduction que nos belles baleines bleues.
Il faut donc faire attention à distinguer perception du temps et temps vécu. Et bien que la vie du papillon nous paraisse bien courte à nous, le papillon lui-même doit certainement en avoir la même perception qu’un éléphant pour sa propre durée de vie.


Quelques références:
Pour une définition plus détaillée des traits d’histoire de vie, je vous conseille les deux articles de Stearns : “Life history tactics : a review of the ideas” (Quaterly Review of Biology, 1976) et “Evolution of life history traits – Critique of theory and a review of data” (Annual Review of Ecology and Systematics, 1977)
Pour les guppies, vous trouverez les infos en lisant “Evaluation of the rate of evolution in natural population of guppies (Poecilia reticulata) ” de Reznick et ses collaborateurs (Science, 1997)
Et pour vous faire une idée plus globale des théories évolutives et des stratégies employées par les organismes, vous pouvez jeter un œil au livre Biologie évolutive, de Thomas, Lefèvre et Raymond aux éditions deBoeck.

lundi 24 novembre 2014

Des femelles crabes sous le charme de robots danseurs

Hésitation. Autour d’elle, quatre grosses pinces s’agitent dans un ballet sensuel, démonstration des attributs de chacun. De la drague pure à laquelle elle ne saurait résister. Lequel de ses prétendants choisir ?

Nous sommes sur une plage, au nord de l’Australie. La danse des crabes a débutée, un florilège de mouvements de pinces synchronisés pour s’attirer les faveurs des dames. Mais notre femelle ne fait pas dans le banal. Les pinces qui s’agitent devant elle sont en plâtre, articulées par des robots qui se font passer pour des mâles. Et elle n’y voit que du feu…

L’intrigante danse des robots


Nous ne sommes pas sur le tournage du dernier Spielberg « Les pinces de la mer », ni plus que nous assistons à la dérive sexuelle de robots ayant pris leur indépendance. Nous sommes en réalité sur le terrain de jeu de scientifiques. L’équipe est spécialisée dans l’étude des crabes violonistes. Chez ces espèces, le mâle présente une particularité étonnante : il a une pince sur-développée. Mais pas dans le genre du tennisman qui utilise plus un bras que l’autre. Non, plutôt dans le genre méchamment-super-sur-développé. A côté, l’autre pince passe pour un membre complètement atrophié et ridicule. Le rôle de cette pince énorme ? Attirer les femelles bien sûr. Et puis parfois se battre un petit peu, boys will be boys… Ces messieurs, quand vient l’heure de se trouver une chérie, fond des appels de pinces. Les femelles, face à cette armada de jolis minois qui s’agitent en rythme, peuvent alors tranquillement choisir leur prétendant.

Quelques spécimens parmi les crabes violonistes (photos prises ici et )

Évidemment, une parade aussi intrigante attire forcément les scientifiques, avec leurs questions par milliers. On se met à la place de la femelle : qu’est-ce qui peut bien l’attirer chez ces artistes en herbes qui se trémoussent en rythme ? 

Puisque les études ne datent pas d’hier, les chercheurs ont déjà mis en évidence que ces dames préfèrent les messieurs qui arborent les plus grosses pinces, et qui font les appels les plus rapides. Mais est-ce que ce sont les seuls critères ? Certes, les mâles agitent leurs pinces plus ou moins grosses de manière plus ou moins rapide. Mais il y a maintes façon de le faire, notamment en termes de synchronisation avec les autres prétendants. Chez la petite espèce du doux nom d’Uca mjoebergi, la danse est particulièrement synchrone, alors on se dit quand même que ce n’est pas par hasard. Comment en avoir le cœur net ? Il faudrait étudier la réaction des femelles face à des mâles qui se dandinent de manière plus ou moins synchrone. Difficile, quand tous les mâles s’y mettent à cœur joie pour ne présenter aucune variabilité de ce côté-là. Qu’à cela ne tienne, faute de mâles coopératifs, les chercheurs en fabriqueront eux-mêmes !

Notre protagoniste, le crabe Uca mjoebergi, en pleine danse de la joie (Source)

Des robots complices des scientifiques


C’est ainsi qu’on se retrouve avec des robots qui dansent sur les plages… L’équipe s’amuse ainsi à montrer aux femelles crabes des pinces en plâtre qui s’agitent, répliques parfaites de vraies pinces. Après tout, c’est tout ce qui intéresse les femelles…  

Dans une étude qui date de quelques années (Reaney et al. 2008), les chercheurs commencent tout d’abord à opposer les mâles par paires. D’un côté, une paire de mâles qui dansent simultanément. De l’autre, à 40 cm de là, deux mâles dont un agite sa pince avant l’autre. La femelle est placée à égale distance des quatre prétendants. Une fois libre de ses mouvements, elle va alors choisir un mâle, usant de comportements typiques, mouvements saccadés avec une approche vers l’individu qui l’intéresse, ce qui est tout de même un signe rassurant que l’illusion fonctionne. Contre toute attente, les mâles sur qui les dames jettent leur dévolu sont rarement ceux qui font leur performance en synchronisation : les femelles ont une préférence très nette pour le « leader » comme l’appellent les chercheurs, ce bras articulé qui démarre le mouvement avant son compère.

Vidéo de l’expérience. La femelle est placée au milieu, immobilisée un temps histoire qu’elle se remette de ses émotions (la capture, tout ça). Puis les chercheurs la laissent libre de ses mouvements, lui permettant alors de jeter son dévolu vers sa pince en plâtre préférée.

Cette année, les chercheurs nous servent leur nouvelle tournée de drague robotisée (Kahn et al. 2014). Cette fois, ils veulent préciser à quel point les femelles affectionnent les mâles asynchrones. Ils font alors danser trois de leurs protagonistes en rythme, agitant la pince précisément 6,7 fois par minute. La quatrième pince articulée est alors réglée pour s’agiter autant de fois que les autres, mais de manière décalée, avec différents degrés de décalage : soit elle précède les autres (en finissant son mouvement ou non avant que les autres ne démarrent), soit elle les suit (encore une fois avec ou sans recouvrement), soit elle bouge précisément entre deux mouvements de ses compères. Résultat ? Si les femelles préfèrent ceux qui ne font pas comme les autres, encore une fois, l’ordre de mouvement a un rôle. Les femelles ne montrent ainsi aucune préférence particulière pour ceux qui s’agitent en retard. Au contraire, elles montrent un fort intérêt pour les mâles qui s’agitent avant les autres, les fameux « leaders ».

Ce qui est paradoxal, c’est que le fait que les femelles préfèrent les mâles asynchrones, plus précisément les leaders, permet de donner une explication quant à la parfaite synchronie observée ! En effet, cette synchronie pourrait d’une part s’expliquer par une coopération des mâles, dans le cas où les femelles préfèrent les groupes synchrones. Tous les participants bénéficieraient alors à danser en même temps. En parallèle, une synchronie pourrait se mettre en place qui résulterait de la préférence des femelles pour les leaders. Il s’agirait alors d’un phénomène explicable par la théorie des jeux. Dans son explication la plus simple, si un mâle essaie de danser le premier, il s’attirerait donc à lui seul les faveurs des femelles. Les autres prétendants ont donc intérêt à bouger dès qu’ils détectent un fifrelin de mouvement chez leurs opposants… De fil en aiguille, chacun essayant d’être le premier, l’ensemble finit dans un beau ballet synchronisé.

Construire des robots pour duper les animaux, les scientifiques n’en sont plus à leur coup d’essai. Un écureuil qui parle et qui bouge (Source), une maman poule bionique (Source), ou des bestioles télécommandées (Source), les subterfuges font foison, et ça fonctionne !


C’est ainsi que les scientifiques font des découvertes : ils construisent des robots et les font participer à des parades sexuelles ! Qui a dit que le métier était ennuyeux ?



Bibliographie :

  • Kahn, A.T., Holman, L. & Backwell, P.R.Y. 2014. Female preferences for timing in a fiddler crab with synchronous courtship waving displays. Animal Behaviour, 98, 35-39.
  • Reaney, L.T., Sims, R.A., Sims, S.W.M., Jennions, M.D. & Backwell, P.R.Y. 2008. Experiments with robots explain synchronized courtship in fiddler crabs. Current Biology, 18, R62-R63.
  • Le site web de l’équipe, plein d’infos sympas avec des jolies images et des vidéos
  • Article sur l’utilisation des robots dans l’étude des animaux


Sophie Labaude

lundi 1 juillet 2013

Prenez en de la graine !

Ce matin, j’ai reçu un mail qui disait ceci : « Salut ! Une amie m’a ramené une graine de Baobab de Madagascar. J’ai beau avoir tout essayé, rien n’y fait, pas de petit Baobab en vue… Comment cela se fait il ? Pourquoi, en revanche, quand je mets des lentilles à germer sur un coton humide, ces petites graines donnent des plantules au bout de quelques jours ? C’est injuste ! »
Aujourd’hui, comme vous aurez pu vous en douter, je vais tenter de répondre à cette question : pourquoi certaines graines germent elles en quelques jours quand d’autres restent tout simplement endormies ?
D’abord, rappelons-nous ce qu’est une graine. D’après l’Encyclopaedia Universalis, la graine correspond à « un organe de dissémination résultant de la transformation d'un ovule : après la fécondation, ou même sans accomplissement d'un processus sexuel (agamospermie), un embryon est formé dans le prothalle femelle (gamétophyte) ; dans un tissu entourant l'embryon, ou dans l'embryon lui-même, des réserves sont accumulées, que celui-ci consommera lors de la germination ; simultanément, les téguments ovulaires se transforment en une carapace mortifiée, plus ou moins dure et imperméable, protégeant l'embryon et les réserves. »
Oulala, que de mots compliqués dans cette définition ! On va reformuler ça de manière plus simple. Mais d’abord, souvenons-nous que nous avons tous, au moins une fois dans notre vie, observé de manière plus ou moins attentive une graine à la loupe. En général, cela se déroule au collège et la graine en question est un haricot coupé en deux… Voici une photo qui va raviver les souvenirs :

Une graine de haricot coupée en deux. Source

 Et pour plus de précisions, voici comment on arrive à la graine, en partant de la fleur, après fécondation :
Transformation de la fleur en fruit. Source
Transformation de la fleur en fruit. Source

D’après ces schémas, la graine est donc un ovule transformé, en général après fécondation (rappelons que la fécondation est l’union d’un gamète mâle et d’un gamète femelle), qui est protégé par le fruit (anciennement le pistil, avant fécondation). Il faut aussi savoir que dans la graine, une fois que les réserves auront été stockées, l’embryon formé après fécondation va cesser de se développer et va être très fortement déshydraté (parfois jusqu’à 95% de déshydratation !). Gardez ça en tête pour la suite.
Or donc, toutes les graines ne vont pas pouvoir germer de la même manière. Mais pourquoi cela ?
Pour qu’une graine germe, il faut qu’elle soit placée dans des conditions optimales de germination. Ainsi, si l’on veut s’amuser à faire germer des lentilles, il suffira de les humidifier et de les placer sur un coton humide… et quelques jours plus tard, on obtiendra une petite pousse verte.
Mais certaines graines ne poussent pas, même si on les arrose. Si elles ne donnent aucun signe d’activité, c’est parce qu’il n’y a pas eu ce que l’on appelle la levée de dormance. La dormance est une « absence de développement d’un bourgeon ou d’une graine malgré les conditions écologiques favorables. » Il s’agit en particulier d’une « stratégie adaptative pour passer la mauvaise saison. » [1]
En clair, même si la graine est disposée dans des conditions idéales de germination, elle ne germera pas, car il n’y aura pas eu un signal préalable déclenchant la germination.
Je m’explique. Prenons par exemple des graines bien connues des enfants des régions tempérées : les marrons, qui sont les graines du Marronnier d’Inde Aesculus hippocastanum .

Quelques marrons. Source

Les marrons sont produits à la fin de l’été et se retrouvent au sol au début de l’automne, où ils vont passer l’hiver enfouis sous les feuilles mortes (s’ils n’ont pas été mangés entre temps par les sangliers ou autres animaux). Ils germeront par la suite au printemps. Cela semble évident… mais pourtant, on ne voit pas de marrons germer avant l’hiver, ce qui semble logique puisque la plantule qui aurait sorti ses feuilles délicates en octobre ne ferait pas long feu en décembre… Quoi que, avec la météo actuelle, on pourrait se poser des questions… mais ceci est un autre sujet !
Eh bien, il existe une explication simple pour que la graine germe au « bon moment », c'est-à-dire après l’hiver : il est nécessaire que la graine ait subi une période de gel, ou tout du moins de froid continu, pour que la dormance soit levée et que la graine puisse germer. Sans cette période de gel, et même si la graine est placée dès l’automne dans des conditions optimales de croissance (redoux soudain, culture sous serre…), elle ne germera pas.
Bien évidement, s’il suffisait uniquement d’appliquer une période de gel pour faire sortir les graines de leur dormance, ça serait beaucoup trop simple… En effet, il existe plusieurs types de dormance.
Certaines graines ne possèdent même pas de phase de dormance : au contact de l’eau, les tissus de la graine vont s’imbiber puis l’embryon va utiliser les réserves pour grandir (une observation flagrante est l’augmentation de la taille de la radicule, qui va percer l’enveloppe de la graine).

Les autres graines sont soumises à une dormance qui peut être de plusieurs types [2] :
1) La dormance physiologique : elle est levée par des écarts de températures prolongés. C’est le cas chez un grand nombre de plantes à fleurs telles que les tomates, l’avoine, ou encore le tabac. C’est aussi le cas pour l’exemple que j’ai précédemment utilisé avec les marrons. Pour « tricher » avec de telles graines, on peut tout simplement les mettre au frigo un certain temps pour simuler l’hiver !
2) La dormance morphologique : cette fois, l’embryon n’est pas complètement fini dans la graine, c’est pour cela que la germination n’est pas immédiate, même en présence de conditions optimales. L’embryon doit donc continuer à se développer alors même que la graine a été séparée de la plante mère : c’est pour cela que la germination n’est pas immédiate même si la graine est située en conditions idéales.
3) La dormance physique : la graine est protégée par une enveloppe totalement imperméable… et donc l’eau ne peut pas atteindre les tissus internes et ne peut pas réhydrater l’embryon. Sans eau, pas de croissance possible ! Il est donc nécessaire d’avoir une action physique sur la graine pour que celle-ci puisse germer. Par exemple, il faut une abrasion mécanique (les tissus protecteurs de la graine doivent être dégradés par frottements, par broyage…) ou chimique (la graine peut être avalée par un animal et subir un traitement chimique acide dans l’estomac… pour ensuite ressortir de l’autre côté et être prête à germer !)
Bien évidement, il existe des intermédiaires entre ces trois catégories : dormance morpho-physiologique par exemple…

Concernant l’histoire de la graine de Baobab qui ne veut pas germer il est fort possible que la dormance de cette graine n’ait pas été levée. Dans les régions tempérées froides, c’est le froid qui est responsable de la levée de dormance… entre autres facteurs. Mais dans les régions tropicales chaudes, c’est plutôt la chaleur ! En effet, les graines vont avoir tendance à germer lorsqu’il fait le plus frais : une grosse période de chaleur est donc nécessaire pour lever la dormance.
En parlant de lever de dormance, savez vous que grâce à cette protection supplémentaire, on retrouve encore des graines qui ont plus de mille ans… et qui sont encore capables de germer ? C’est le cas des graines de Lotus Nelumbo nucifera, retrouvées dans des sédiments d’un ancien lac de Chine, qui ont été mises à germer… et qui ont poussé ! [3]
Fleur de Lotus Sacré. Source : photo perso
Graines de Lotus. Source

Pour avoir moi-même fait l’expérience, ces graines ne germent que si la protection externe est suffisamment abimée pour que l’eau puisse atteindre l’intérieur de la graine. Il s’agit ici d’une dormance physique, qui ne peut être levée que si la coque est abrasée par une action mécanique. Ainsi, les graines de Lotus retrouvées dans les sédiments ont été abrasées mécaniquement à l’aide de papier de verre pour que l’eau puisse pénétrer à l’intérieur. Rendez vous compte que pendant un millénaire, ces graines sont restées en sommeil en attendant de pouvoir redonner un organisme fonctionnel et complet !
C’est à cette occasion que l’on s’aperçoit que les végétaux nous réservent encore et toujours de nouvelles surprises !

Bibliographie
[1] Introduction à la botanique, G. Ducreux, ed. Belin, 2002
[2] Seed dormancy and the control of germination, W. E. Finch-Savage and G. Leubner-Metzger, New Phytologist (2006) 171:501–523

[3] Exceptional seed longevity and robust growth: ancient sacred Lotus from China, J. Shen-Miller, M.B. Mudgett, J.W. Schopf, S. Clarke, R. Berger, American Journal of Botany (1995) 82:1367-1380   

samedi 25 août 2012

Les éléphants de mer sont-ils si polygynes qu’ils y paraissent ?

Sur la plage se déroule un combat sans merci. Deux éléphants de mer mâles, énormes, s’entredéchirent. La raison ? Le sexe, évidemment. Car le mâle victorieux aura comme récompense une belle centaine de femelles à sa disposition. Soit autant de descendants potentiels. Mais que le pacha ne se réjouisse pas trop : les choses ne sont pas tout à fait ce qu’elles semblent…


Un mâle éléphant de mer, Mirounga leonina (Source

Dans le règne animal, il existe quatre grands systèmes d’appariement, chacun avec leurs avantages et leurs inconvénients :

     - La promiscuité, régime sans restriction où chaque individu va pouvoir copuler, au sein d’une même saison de reproduction, avec plusieurs autres individus
     - La monogamie, où chaque mâle ne s’apparie qu’avec une seule femelle, et vice-versa
     - La polyandrie, association d’une femelle avec plusieurs mâles pendant une période de reproduction
     - La polygynie où un mâle va copuler avec plusieurs femelles

C’est ce dernier cas qui nous intéresse. La polygynie se retrouve souvent chez des espèces dont les soins aux jeunes peuvent n’être assurés que par la mère, le père ne pouvant pas assumer sa descendance trop nombreuse. Le mâle obtient un bénéfice évident : il a accès à un grand nombre de femelles, ce qui lui assure une descendance nombreuse, propice à la dissémination de ses gènes. Cependant, seuls les mâles les plus vigoureux peuvent monopoliser un groupe de femelles, ou un territoire dans lequel elles se trouvent. Les femelles obtiennent ainsi un bénéfice indirect : elles sont assurées que leur descendance portera les gènes de ce mâle puissant.

Un des cas les plus cités dans les livres et les plus utilisés dans les cours concerne l’éléphant de mer. Chez cette espèce, les femelles reviennent à terre tous les ans pour mettre bas. Les mâles les plus gros (qui sont aussi les plus âgés), mènent alors des combats sanglants à l’issu desquels le vainqueur aura le monopôle du groupe de femelles, qui peut dépasser 200 individus. Alors que les femelles allaitent leurs petits, le mâle veille sur son harem, soucieux d’éloigner les mâles opportunistes qui tentent de s’accoupler discrètement avec une femelle. Une fois le jeune sevré et le mâle dominant satisfait, tout ce beau monde retourne en mer jusqu’à l’année suivante.
 
Combat sanglant entre deux mâles éléphant de mer (Source)

Oui mais voila, un constat a été fait qui remet en question ce que l’on pensait connaître de l’animal : les chercheurs n’observent presque jamais sur la plage de jeunes femelles qui n’ont jamais eu de rejetons. On s’attendrait pourtant à les voir se pointer en fin de saison pour copuler avec le mâle dominant. Mais non. Elles débarquent un beau jour, et mettent au monde un jeune issu d’un père invisible…
 
Jeune éléphant de mer (Source)
 

Des études comportementales…

A partir de ce constat, une étude comportementale a été menée chez l’éléphant de mer austral Mirounga leonina (De Bruyn et al. 2011). Le principe : chaque année, au moment du sevrage, des jeunes femelles sont « marquées », c'est-à-dire qu’on leur pose au niveau de la nageoire caudale, une espèce de boucle d’oreille comprenant un numéro unique, permettant l’identification de chaque individu. Près de 3700 femelles ont ainsi reçu un code d’identification, sur une période s’étalant de 1983 à 2007. Ensuite, les chercheurs se positionnent sur la plage durant la période de reproduction et sondent les femelles pour découvrir qui est présent, qui est resté en mer, qui a un jeune, ou qui encore n’est présent sur la plage que pour s’accoupler. Et là, surprise. Alors qu’on sait que la plupart des femelles ne mettent pas bas tous les ans même si elles en sont biologiquement capables, on s’attend donc à ce que beaucoup viennent sur la plage sans jeune juste pour s’accoupler. Cependant, les chercheurs ont observé que seulement 1% des femelles sur la terre ferme étaient présentes uniquement dans ce but. De plus, parmi les femelles qui ont loupé une saison de reproduction, 87% ont quand même mis bas l’année suivante ! Les évidences d’une copulation en dehors de la plage commencent à être fortes…
 

Dispositif de reconnaissance individuel : "Jumbotag" (Source : image 1, image 2)

Pour compléter cette étude à long terme, les chercheurs disposaient d’un autre outil : un petit appareil qui se colle sur la tête de l’animal et qui permet un suivi de sa position par satellite. En posant une cinquantaine de dispositifs, l’idée était de marquer par chance une femelle qui allait louper une saison de reproduction pour mettre bas l’année suivante… et ainsi découvrir ce qu’elle faisait au moment de la copulation supposée. Et là, bingo. Malgré la mue qui entraîne très rapidement la perte du dispositif, deux femelles ont répondu à ces critères. Et ce que les chercheurs supposaient s’est confirmé : les femelles, durant la période de réceptivité sexuelle, sont en mer ! De plus, le dispositif montre qu’elles passent plus de temps à la surface de l’eau durant cette période, suggérant une copulation près de la surface, voire sur un morceau de glace flottant…

Dispositif de suivi par satellite (Source)


… Aux études génétiques

Les études comportementales apportent des arguments convainquant en faveur d’une copulation en mer. Cependant, d’autres raisons peuvent être invoquées pour expliquer les résultats, entre autres : l’absence de la femelle sur la plage parce qu’elle se trouve sur une autre plage (même si cet argument est contrebalancé par une forte fidélité au site de reproduction), l’implantation différentielle de l’embryon qui fait que la femelle met bas deux ans après la copulation sur la plage (en effet, dans un cycle de reproduction annuel, l’embryon ne s’implante pas immédiatement, afin que la mise bas corresponde précisément au retour sur terre l’année suivante), la mauvaise détection des femelles sur la plage par les chercheurs (la probabilité de détection qu’ils ont calculé atteignait tout de même 96% !), etc.
 
Pour compléter les études comportementales, les études génétiques, notamment les études de paternité, sont de parfaits candidats. Elles permettent en effet de mettre en évidence des systèmes d’appariement cryptiques (cachés). Par exemple, chez les oiseaux, alors que la grande majorité des espèces est monogame (des couples stables dont les deux partenaires élèvent les petits), il aura fallu attendre des études génétiques à partir de 1980 pour se rendre compte que le taux de paternité hors couple, autrement dit le nombre de jeunes issus d’un père illégitime, était parfois immense. Il apparait ainsi que 90% des espèces d’oiseaux présentent de la paternité hors-couple, et que la proportion de nichées contenant au moins un poussin illégitime peut atteindre 87% (Griffith et al. 2002).

Chez nos pinnipèdes, deux études génétiques ont été menées chez d’autres espèces que l’éléphant de mer, mais également connues pour être polygynes : l’otarie de Kerguelen Arctocephalus gazella (Gemmell et al. 2001) et le phoque gris Halichoerus grypus (Worthington et al. 1999). Dans la première étude, 243 mâles (soit 90% des mâles d’une plage) et 184 mères et leurs petits de l’année suivante ont été analysés. Résultat : malgré l’échantillonnage de la presque totalité des mâles, seuls 23% des jeunes étaient issus de pères présents sur la plage ! De plus, les chercheurs ont pu observer 16 copulations, suivies de mise bas l’année suivante. Et surprise encore une fois : seul un des jeunes était issu du mâle avec qui la femelle avait été vue en train de copuler ! Non seulement des femelles semblent échapper au système de polygynie en copulant en mer, mais en plus celles qui copulent à terre n’offrent pas au mâle la certitude de sa paternité ! La deuxième étude confirme l’implication beaucoup plus faible qu’attendue des mâles territoriaux dans la reproduction : entre 50 et 70% des jeunes phoques gris ne proviennent pas d’un père défendant un harem !

Otarie de Kerguelen mâle Arctocephalus gazella (Source)

Femelle phoque gris Halichoerus grypus, et son petit (Source)


Stratégie alternatives et raisons évolutives

Ces trois études mettent en lumière plusieurs faits chez les pinnipèdes polygynes. D’une part, les femelles sont capables de se reproduire en mer, et cette stratégie semble même être préférée lorsqu’elles n’ont pas besoin de revenir à terre pour mettre bas. D’autre part, même lorsqu’elles copulent avec le mâle dominant, le jeune issu peut provenir d’un autre père, suggérant des copulations multiples et éventuellement une sélection post-copulatoire du mâle.
 
Le système de polygynie chez les pinnipèdes a longtemps été considéré comme bénéfique pour les femelles : celles-ci, en copulant avec le mâle dominant, assurent de bons gènes à leur descendance. De plus, aucun déplacement n’est nécessaire, le mâle est disponible à l’endroit même où elles doivent se rendre pour mettre bas, pratique. Ce mâle est aussi garant de leur tranquillité durant l’élevage du jeune, évinçant ses rivaux qui pourraient persécuter les dames. Que d’avantages donc, qui expliquent que l’hypothèse de stratégies alternatives de la part des femelles ait peu été envisagée.

Cependant, suite à ces études, d’autres raisons sont invoquées pour expliquer la formation en harem des femelles : non pas un désir d’être sous la tutelle d’un beau mâle puissant, mais plutôt une stratégie pour éviter la persécution de la part d’autres mâles, et une contrainte du fait du nombre limité de plages disponibles.

La question se pose alors des raisons évolutives de ces stratégies d’appariement, autrement dit quels sont les bénéfices qu’elles apportent ? Pour les femelles, louper une saison de reproduction est un moyen d’économiser de l’énergie pour mieux l’allouer à sa propre survie et aux reproductions futures. Rester en mer durant la reproduction loupée est aussi un moyen permettant de continuer à s’approvisionner en nourriture, lui évitant ainsi un long voyage vers la plage. De plus, de nombreux mâles ayant atteint leur maturité sont disponibles en mer (75% des mâles éléphants de mer restent en mer durant la période de réceptivité sexuelle de la femelle), permettant un large choix de partenaires. Les avantages directs de rester en mer semblent alors bien plus importants que les avantages indirects que procurent les bons gènes du mâle. Et ce d’autant plus que les mâles territoriaux deviennent puissants avec l’âge, réduisant ainsi le rôle des « bons gènes ». Les mâles qui se trouvent en mer sont potentiellement de futures maîtres de harem !

Et pour les mâles alors ? Pourquoi s’obstiner à essayer de contrôler un harem alors que les femelles vont copuler ailleurs ? Et que la prise de pouvoir est très coûteuse, pouvant même leur coûter la vie ? La raison est simple. Les jeunes mâles n’ont aucune chance de s’accaparer un groupe de femelles et ont donc tout intérêt à rester en mer en espérant y croiser une femelle. Mais les mâles qui ont un harem, même s’ils n’ont pas autant de descendants qu’il y a de femelles présentes, ont toutefois un nombre de jeune plus important. Ayant atteint un certain âge, monopoliser un groupe de femelle permet donc d’augmenter son succès reproducteur, même s’il est plus faible que ce à quoi on s’attendrait en voyant les plages bondées de femelles. De plus, l’animal prenant de l’âge, ses chances d’être encore vivant et de se reproduire les années suivantes diminuent petit à petit. Autant donner le tout pour le tout et tenter une reproduction multiple, au risque d’être sérieusement blessé.
 
L’avènement de la génétique est une bénédiction pour les études centrées sur les systèmes d’appariement. A l’image des oiseaux monogames ou des pinnipèdes polygynes, les choses ne sont pas toujours ce qu’elles semblent être. Il y a fort à parier qu’au cours des prochaines années, d’autres évidences s’écroulent encore…

 

Bibliographie

De Bruyn, P.J.N., Tosh, C.A., Bester, M.N., Cameron, E.Z., McIntyre, T. & Wilkinson, I.S. 2011. Sex at sea: alternative mating system in an extremely polygynous mammal. Animal Behaviour, 82, 445-451.

Gemmell, N.J., Burg, T.M., Boyd, I.L. & Amos, W. 2001. Low reproductive success in territorial male Antarctic fur seals (Arctocephalus gazella) suggests the existence of alternative mating strategies. Molecular Ecology, 10, 451-460.

Griffith, B., Owens, I.P.F. & Thuman, K.A. 2002. Extra pair paternity in birds: a review of interspecific variation and adaptive function. Molecular Ecology, 11, 2195-2212.

Worthington Wilmer, J., Allen, P.J., Pomeroy, P.P., Twiss, S.D. & Amos, W. 1999. Where have all the fathers gone? An extensive microsatellite analysis of paternity in the grey seal (Halichoerus grypus). Molecular Ecology, 8, 1417–1430.
 

Sophie Labaude
Related Posts Plugin for WordPress, Blogger...