Affichage des articles dont le libellé est parasites. Afficher tous les articles
Affichage des articles dont le libellé est parasites. Afficher tous les articles

vendredi 2 avril 2021

Ces plantes qui n’ont pas besoin du Soleil pour vivre

Aujourd’hui, je vous emmène en voyage… en Malaisie ! Comme la plupart d’entre vous, je suis coincé derrière mon écran d’ordinateur en ce moment, mais ce n’est pas une excuse pour ignorer l’actualité scientifique internationale. Et ça tombe bien, car je vais vous parler d’une découverte récente faite dans le parc national du Royal Belum sur la péninsule du Myanmar, en Malaisie.

Ça fait du bien de voyager… même depuis sa chaise d’ordinateur ! (source)

Pour les personnes dont la géographie n’est pas le point fort (et je m’inclue dedans, inquiétez-vous pas), la Malaisie, c’est ici :

Localisation de la Malaisie (gauche, source)
et du parc national du Royal Belum (droite, source : Siti-Munirah et al 2021)

Cette région du monde est un des biodiversity hotspot (« points chaud » de biodiversité en français), c’est-à-dire une zone de la planète qui présente une diversité biologique élevée, directement menacée par les activités humaines. Dans le cas des zones tropicales telles que la Malaisie, il s’agit principalement de la déforestation.

Heureusement, certains gouvernements prennent des mesures pour protéger ce qui peut encore l’être, et créent des zones de réserves qui ne sont pas exploitées. C’est le cas du parc national du Royal Belum, où nos scientifiques ont fait une bien étrange rencontre…

Pour la petite histoire, les scientifiques à l’origine de la découverte et description de cette plante travaillent au Forest Research Institute Malaysia, situé proche de Kuala Lumpur (la capitale de la Malaisie), et ont tout d’abord pris connaissance de l’existence de cette plante… sur les réseaux sociaux ! En effet, un guide naturaliste du Royal Belum State Park avait posté des photos de cette plante intrigante, et les scientifiques en sont venus à la conclusion qu’il pouvait s’agit d’une nouvelle espèce. La suite, on la connait : une campagne de terrain plus tard, une nouvelle plante était répertoriée !

Sans plus attendre, je vous dévoile cette espèce révélée au grand jour par l’équipe en question : il s’agit de Thismia belumensis.

Plante entière dans son milieu naturel (source )

Mais… dites-moi, elle n’est pas très verte, pour une plante… et puis, ça ressemble plus à un cauchemar sorti tout droit de l’imaginaire de Ridley Scott plutôt qu’une sympathique petite plante de sous-bois dans la forêt tropicale… Alors, regardons de plus près ce drôle de végétal.

Vue rapprochée de Thismia belumensis. (source  )

Non seulement, cette plante n’est pas verte et aucune feuille n’est visible… mais elle ressemble furieusement à la bouche d’un animal quand on se rapproche. Alors, que penser ? Est-ce une plante carnivore qui attire des insectes et les gobe au passage dans sa large « bouche » ? Que nenni ! C’est un peu plus complexe que ça…

Effectivement, cette plante n’est pas verte, donc elle ne peut pas réaliser la photosynthèse et utiliser l’énergie du soleil pour fabriquer sa propre nourriture (c’est-à-dire des sucres). Comment fait-elle pour se développer, se maintenir et survivre même ?

Il s’avère que les plantes du genre Thismia (qui regroupe tout de même entre 80 et 90 espèces selon les auteurs) sont ce que l’on appelle « mycohétérotrophes » : cela signifie que ces plantes se développent au dépend des champignons du sol. En gros, au lieu de fabriquer ses propres sucres grâce à la photosynthèse, la plante utilise son système racinaire pour aller « pomper » les sucres fabriqués par les champignons dans le sol. On assiste donc ici à une relation de parasitisme au bénéfice de la plante, alors que la plupart du temps c’est le champignon qui sera le parasite.

On peut même aller plus loin et dire que les champignons servent de lien de transfert direct du carbone depuis les plantes chlorophylliennes jusqu’à nos plantes mycohétérotrophes ! Pour résumer la chose, voici un petit schéma :

Lien trophiques entre les plantes et les champignons dans le sol, avec les transferts de carbone (=sucres) associés. (Source)

Dans notre cas, il s’agit d’une relation de parasitisme et non de symbiose (comme avec les mycorhizes) car c’est une relation à sens unique : la plante récupère les nutriments et sucres auprès du champignon mais ne redonne rien en échange.

Quant à la forme de cette fleur, eh bien… les chercheurs n’ont pas encore trouvé d’explication ! ce qui est encore plus étrange, c’est que chez le genre Thismia, les fleurs ont la plupart du temps une symétrie radiale (comme une étoile de mer si l’on veut) alors que dans notre cas, la fleur possède une symétrie bilatérale. Le mystère reste donc entier vis-à-vis de cette morphologie particulière…

A gauche, Thismia neptunis, une espèce récemment redécouverte en Malaisie (Sochor et al 2018 ); à droite,  Thismia belumensis (modifié d’après Siti-Munirah et al 2021)

D’autres exemples de mycohétérotrophie peuvent s’observer à travers le règne végétal, et pas besoin d’aller à l’autre bout du monde pour ça ! On trouve par exemple Monotropa uniflora en Amérique du Nord, dans les forêts où se trouvent des champignons de la famille des Russules (Yang et al 2006). De la même manière que les plantes du genre Thismia, la monotrope va se « brancher » sur les filaments du champignon présent dans le sol afin d’en extraire les nutriments.

Mais le plus étrange dans tout ça, c’est la mycohétérotrophie n’a pas qu’une seule origine (Merckx et al, 2013) dans le règne des végétaux ! Cette particularité se trouve dans de nombreuses lignés évolutives qui comptent principalement des plantes chlorophylliennes… alors, pourquoi cette capacité à « voler » des sucres aux champignons s’est-elle développée ? Sans avoir la réponse exacte à cette question (comme bien souvent en sciences), on peut proposer plusieurs hypothèses (Merckx et al, 2013). Par exemple, on pourrait penser que certaines plantes utilisent la mycohétérotrophie pour éviter de stocker trop de nutriments dans leurs graines : ainsi, les nouvelles plantules s’associent directement avec les filaments de champignons dans le sol, en leur « pompant » leurs réserves de sucres… c’est tout bénéfice pour la plante-mère, qui n’a pas besoin de dépenser toutes ses ressources dans sa descendance (les autres organismes s’en chargent !). D’autres hypothèses laissent entendre que le développement de la mycohétérotrophie s’est fait en même temps que la formation des premières forêts à canopée fermée… ce qui empêche la lumière d’arriver au sol ! Donc, être capable d’utiliser les ressources d’autres organismes, au lieu de faire la photosynthèse, est un avantage évolutif certain dans ces conditions d’obscurité.

En conclusion, les plantes mycohétérotrophes tirent leur subsistance du parasitisme envers les champignons… qui eux-mêmes, tirent leur nourriture soit des arbres vivants ou morts, alors on peut dire qu’au bout du compte, tous ces organismes qui sont reliés les uns autres tirent leur énergie d’une seule et même source : le soleil !

Bibliographie

·        Siti-Munirah MY, Suhaimi-Miloko Z, Zubir Ahmad MI (2021) Thismia belumensis (Thismiaceae), a remarkable new species from The Royal Belum State Park, Gerik, Perak, Peninsular Malaysia. PhytoKeys 172: 121–134. https://doi.org/10.3897/phytokeys.172.59336

·        https://www.newscientist.com/article/2162691-a-weird-underground-plant-has-been-rediscovered-after-151-years/

·        https://www.newscientist.com/article/2270144-fairy-lantern-flower-has-a-gaping-mouth-and-saps-energy-from-fungi/

·        Sochor, M., Egertova, Z., HRONEŠ, M., & DANČÁK, M. (2018). Rediscovery of Thismia neptunis (Thismiaceae) after 151 years. Phytotaxa, 340(1), 71-78.

·        S. Yang & D.H. Pfister (2006) Monotropa uniflora plants of eastern Massachusetts form mycorrhizae with a diversity of russulacean fungi, Mycologia, 98:4, 535-540, DOI: 10.1080/15572536.2006.11832656

·        Merckx, V. S. F. T., Freudenstein, J. V., Kissling, J., Christenhusz, M. J. M., Stotler, R. E., & Crandall-Stotler, B. (2013). Mycoheterotrophy. Springer, New York, NY. doi10, 978-1.

 

vendredi 22 mai 2020

A la poursuite des truites parasitées


Les premiers pas dans le monde de la science sont toujours une expérience inoubliable. Aujourd’hui, Perrine, une jeune étudiante, est invitée sur notre blog pour vous raconter son premier stage de terrain.


L’Ariège. Terre inconnue, mystérieuse, et lointaine, elle fut ma terre d’accueil pendant les trois mois d’été de l’année 2019. Ce n’est pas pour aller observer les ariégeois et leurs coutumes que je me suis déplacée si loin de la Nièvre mais bien pour pêcher des truites fario (Salmo truita). C’est donc à la Station d’Écologie Théorique et Expérimentale du CNRS (SETE) à Moulis que je débarquais par une magnifique journée d’été avec mon bagage d’étudiante agronome, pour participer à un projet scientifique incroyable.





Pêcher des truites, très bien, mais pour quoi faire ?


Les fédérations de pêche d’Occitanie se sont alertées ces dernières années quant à l’augmentation de la mortalité des truitelles (bébés truites). Cette mortalité semble directement liée à la présence de Tetracapsuloïde bryosalmonae, un parasite cnidaire des salmonidés (appelons-le plus simplement “le parasite” pour le reste de l’article), et qui provoque une maladie infectieuse : la maladie rénale proliférative, plus communément appelée PKD (pour l’anglais Proliferative Kidney Disease).

Le parasite prolifère et se multiplie dans les bryozoaires, des organismes aquatiques filtreurs formant des colonies sur différents substrats d’eau douce tels que des roches ou des algues. Quand les conditions sont propices, les bryozoaires infectés libèrent le parasite dans l’eau. Le parasite va ensuite pénétrer sous forme de spores à travers la peau et les branchies dans les muqueuses des truitelles, son second hôte. Il va atteindre les reins et la rate de l’alevin via la circulation sanguine, où il va continuer son développement. La truitelle libérera les spores du parasite en urinant, et ceux-ci pourront coloniser de nouveaux bryozoaires, et ainsi de suite.

Cycle de vie du parasite Tetracapsuloides bryosalmonae (reproduction : SLS Nadler, Küsnacht)

Seulement, chez les truites, le rein a une fonction dans le transport de l’oxygène. Lorsque le parasite s’y multiplie, le rein grossit, dysfonctionne, et peut causer la mort de la truitelle par asphyxie. Dans 10 à 90% des cas, la truitelle meurt (Sudhagar et al. 2020). Ce parasite était déjà connu des fédérations de pêche, mais jusqu’il y a quelques années, la mortalité des truitelles due à celui-ci était encore modérée. C’est l’augmentation de la mortalité des truitelles due au parasite qui a amené Simon Blanchet, chargé de recherche en Ecologie aquatique au CNRS, et Eloïse Duval sa doctorante à se pencher sur la question.

Leur projet de recherche s’attache à étudier la distribution, la dispersion, et les impacts du parasite sur les populations de truites fario et à comprendre les causes de cette soudaine hausse de la mortalité, qui met en péril la pérennité des populations sauvages de la région. Et j’ai eu la grande chance d’intégrer cette équipe et de les aider pendant quelques temps à faire avancer le projet.


Le protocole de recherche


Le projet est vaste et ambitieux : il s’agit de prélever et d’étudier des truitelles de près de 50 sites, ciblés par les fédérations de pêche, et répartis sur tout un tas de cours d’eau un peu partout en Occitanie !

La région Occitanie couvre une bonne partie du sud de la France (Source)


La truite fario est une espèce appartenant à la famille des salmonidés, grandissant en eau douce. Elle se reproduit entre novembre et février dans une eau fraîche entre 5° et 12°C. Après l’éclosion au printemps, les juvéniles commencent à se disperser et se déplacer vers l’aval des cours d’eau, vers des zones de la rivière adaptées à leur taille et besoins. Ils s’installent plutôt dans les radiers et les plats courants, des zones peu profondes avec un courant à vitesse moyenne.

En pêchant en été, nous pouvions donc cibler les truitelles âgées de moins d’un an, de taille inférieure à 10 cm, qui sont les plus susceptibles de développer la PKD. Ainsi sur chaque site nous échantillonnions environ 20 truitelles par pêche électrique, et nous faisions sur chacune d’entre elles différentes mesures.


Comment se déroule une journée de terrain ?


Chaque matin, nous vérifions que tout le matériel est présent dans le Ranger : la quantité à y entasser est FARIOMINEUSE (vous l’avez ??). Ensuite, une fois sur site, nous les stagiaires néophytes et les personnes expérimentées comme Simon, allons pêcher.

Avant de s’aventurer dans l’eau il faut s’équiper : Waders, chaussures à crampons antiglisse, épuisettes, seaux, anode, cathode et groupe électrogène. L’anode (le pôle négatif) est une sorte de perche dotée d’un anneau conducteur qui sera agitée dans l’eau par un membre de l’équipe, et la cathode (le pôle positif) est une « corde » qui baigne dans l’eau en permanence. A vrai dire, les waders sont devenus ma seconde peau pendant l’été. Adieu la sexytude, mais cela vaut mieux si vous ne voulez pas vous prendre une châtaigne. Car la pêche électrique n’a rien d’une petite baignade tranquille en eau douce et à la canne à pêche, cela peut être assez dangereux. Mais cela s’est toujours bien passé dans mon équipe, le COURANT passait bien entre nous.

Une pêche électrique se déroule à peu près ainsi : les épuisettiers (mot inventé pour l’occasion) se mettent de part et d’autre de la personne qui porte le groupe électrogène et l’anode, à l’affut des malheureux poissons. L’exercice n’est pas facile, les truitelles assommées sont emportées rapidement par le courant et me passent souvent sous le nez. Ou atterrissent plus volontiers dans l’épuisette de mes camarades.

Sur le terrain, on s'organise en différents postes de travail (Crédit : Pierre Girard)
La pêche électrique est quand même bien plus efficace que la pêche à la ligne ! (Crédit : Pierre Girard)


Aucune pêche ne se ressemble. De fait, chaque cours d’eau a ses caractéristiques propres : sa taille, la turbidité (degré de transparence) de l’eau, la vitesse et la force du courant, la structure et la texture du sol, la température et autres paramètres physico-chimiques, la composition de la végétation environnante… En conséquence, la difficulté à pêcher varie. Parfois nous mettons 15 minutes pour pêcher nos 20 truites et d’autres fois c’est la dèche, il nous faut 40 minutes pour en avoir à peine la moitié. Nous enregistrons d’ailleurs les caractéristiques physico-chimiques de chaque cours d’eau à l’aide d’une sonde et d’un thermomètre.

Une fois nos 20 truitelles capturées, elles sont chacune mises dans une bouteille d’eau, et puis elles vont y rester pour y faire pipi tranquillement. Oui j’ai bien dit faire pipi. Notre protocole se base sur la détection d’ADN environnemental (ADNe) : ceci consiste en la filtration de l’eau des bouteilles grâce à des pompes reliées à des portes-filtres montés à la main et … à l’huile de coude. L’ADN contenu dans la bouteille, rejeté par l’alevin lors de la miction (c’est le mot scientifique pour dire qu’on fait pipi, vous pourrez toujours le replacer lors d’un diner de famille assommant pour vous éclipser aux toilettes d’une manière élégante), va se déposer sur le filtre. Ensuite, lors des analyses de biologie moléculaire, on pourra isoler l’ADN du parasite si présent, grâce à une séquence connue de son génome.

Notre système de filtration d'ADNe (Crédits : Daniel Estrade)

Capture colorimétrique d'une truitelle anonyme par photographie (Crédit : Eloïse Duval)


Après le recueil de l’ADNe, des analyses complémentaires sont effectuées pour essayer d’établir des liens entre les caractères observables de l’individu (son phénotype), sa composition génétique (son génotype) et sa contamination et résistance au parasite. Chaque truite « filtrée » est anesthésiée, puis est prise en photo pour faire une analyse colorimétrique. Elle est ensuite mesurée, pesée, et se fait prélever un morceau de nageoire pelvienne (si si, ça repousse). La truitelle se remettra de ses aventures dans un seau « réveil » avant d’être relâchée. La journée finie nous rentrons avec nos échantillons d’ADNe, de nageoires, et nos mesures. Ces échantillons seront envoyés en laboratoire pour être analysés à la fin de la saison de pêche et ils permettront l’élaboration de statistiques quant à la distribution et l’impact du parasite sur l’ensemble des cours d’eau ciblés. 


Conclusion d’une stagiaire

 
Si trois mois de participation à ce projet scientifique ne m’auront pas transformée en pêcheuse aguerrie, j’aurai passé un été très enrichissant sur le plan scientifique et découvert les superbes paysages de l’Ariège sauvage. J’espère découvrir plus encore le monde de la recherche et pourquoi pas dans d’autres domaines de l’écologie.


Quelques photos de l'Ariège (si vous cherchez votre prochaine destination de vacances)


L’objectif à long terme pour l’équipe avec laquelle j’ai travaillé sera de proposer des solutions permettant de réduire le nombre de pertes parmi les rangs de truitelles, victimes de ce parasitisme qui gagne en puissance. “L’équipe poisson” de Moulis fait un travail formidable et j’espère que les travaux de recherche permettront aux fédérations de pêche d’Occitanie de mettre en place des solutions pérennes qui auront pour but de préserver ces petites truitelles. Affaire à suivre !


References :

  • Sudhagar, A.; Kumar, G.; El-Matbouli, M. The Malacosporean Myxozoan Parasite Tetracapsuloides bryosalmonae: A Threat to Wild Salmonids. Pathogens 2020, 9, 16.

Pour en savoir plus sur les projets de l’équipe et de le SETE : 


Perrine HUET


dimanche 22 décembre 2019

La science des rennes de Noël

A quelques heures de Noël, un homme tout de rouge vêtu s’affaire aux derniers préparatifs de sa grande aventure annuelle. Son moyen de transport favori est prêt à décoller : un magnifique traîneau tracté par des créatures féériques et pourtant bien réelles, les rennes. Si la capacité de voler de ces magnifiques Cervidae est bien comprise (de la poussière magique, et un breuvage top secret préparé par le Père Noël himself !), les scientifiques s'interrogent toujours sur une curieuse particularité de l’animal favori du pater : ce proéminent nez rouge dont est affublé le célèbre Rudolph ! Paraîtrait même qu’il brille dans la nuit…


Rudolph, le leader du tractage de traineau (Source)


La piste d’un avantage en termes de visibilité ?


Bien voir est une caractéristique importante chez beaucoup d’espèces de mammifères, qui utilisent la vision pour nombre d’utilités : trouver de la nourriture, repérer des prédateurs, se reconnaître entre individus, etc. Les rennes, de leur petit nom scientifique Rangifer tarandus, font face à quelques complications en matière de visibilité avec une luminosité particulièrement basse dans l’hiver de l’hémisphère nord. Pourtant, ils n’en sont pas moins bien lotis. En effet, une étude (1) a montré que ceux-ci sont capables de voir les ultraviolets ! Les chercheurs ont montré que les deux types de photorécepteurs que l’on trouve dans la rétine de ces animaux - les cônes et les bâtonnets - sont sensibles aux rayons UV. Un avantage certain en Arctique où la lumière est particulièrement riche en rayons ultraviolets. Une autre étude (2) confirme en effet que dans la faible lumière de l’hiver où végétation et neige se confondent dans le spectre de la lumière visible, les plantes et lichens dont se nourrissent les rennes opposent un fort contraste à la neige en vision UV, puisque celle-ci renvoie une grande proportion des rayons UV.

Les particularités des rennes en matière de vision ne s’arrêtent pas là ! Les yeux de Rudolph et ses compatriotes sont tapissés de tapetum lucidum, un tissu qui joue un rôle de réflecteur de lumière et qui permet d’améliorer la vision lorsque la lumière est faible. C’est ce tissu qui explique que l’on voit parfois des yeux briller dans la nuit, lorsque les créatures qui en sont dotées sont éclairées par les phares de voitures par exemple. Eh bien chez le renne, ce tissu lui permet de changer la couleur de ses yeux d’une saison à l’autre ! Ainsi, si vous croisez un renne avec des yeux d’un bleu profond, c’est probablement l’hiver en Arctique, tandis qu’en été, ces Cervidae arborent des yeux couleur or ! Un trait qui, d’après les chercheurs (3), permet aux animaux de mieux capter la lumière durant les sombres mois d’hiver.

Les yeux d'un renne en été et en hiver (Source)


Au delà de la faible luminosité, un autre paramètre est susceptible de réduire la visibilité de nos tracteurs de traineaux : le brouillard. Malheureusement, les deux adaptations citées ci-dessus ne leur permettent pas de voir par delà un épais tapis de brume. Or, comme il est rappelé dans un autre article (4), les cristaux de glace et gouttes d’eau qui forment le brouillard arrêteraient d’avantage la lumière bleue, tandis que les couleurs rouges seraient plus facilement visibles à travers la brume. Dans ces conditions, un élément émettant de la lumière rouge, à tout hasard le nez d’un renne, permettrait à toute une tribu de Cervidae volants de mieux s’orienter !

Est-il donc possible que le nez de Rudolphe soit une adaptation aux conditions arctiques ? Peu probable. En effet, un tel attribut serait aussi efficace pour attirer les prédateurs qu’un panneau de signalisation lumineux “mangez-moi” ! Si les bénéfices en termes de survie dépassaient les inconvénients, on trouverait sans doute plus de rennes au nez luminescent dans la nature. Mais pour l’instant, seul un individu arborant ce caractère est connu. Pourtant, c’est peut-être justement parce qu’on cherche “dans la nature” qu’on ne trouve pas. Car il pourrait tout de même s’agir de sélection, non pas naturelle, mais bien artificielle ! De la même manière que les agriculteurs sélectionnent les plus grosses citrouilles pour augmenter leur rendement, ou des arbres résistants aux conditions climatiques de leur région, il n’est pas du tout invraisemblable que le Père Noël ait petit à petit augmenté l’efficacité de son cheptel en privilégiant les rennes les plus aptes aux longs voyages nocturnes. Un renne avec un feu de brouillard en guise de nez, quoi de plus adapté pour voler !


Mais ça fonctionne comment, le nez de Rudolph ?


Concrètement, des apparences déconcertantes peuvent tout à fait apparaître brutalement chez des animaux, en conséquence de mutations aléatoires : changement de couleur, apparition de membres supplémentaires, pilosité surdéveloppée… Cependant, la probabilité qu’une mutation provoque à la fois un nez rouge et luminescent est très faible. Soit le Père Noël a eu de la chance, soit il a quelques notions de génétique !

Soyons honnête, les organismes luminescents ne courent pas les rues. Pourtant, ils existent bel et bien ! Vers luisants, créatures abyssales, champignons ou encore bactéries, on retrouve de la bioluminescence dans près de 700 genres (5). La plupart des espèces capables de bioluminescence sont marines, mais on en trouve aussi sur la terre ferme. Quid des couleurs émises ? Eh bien, c’est variable, avec des longueurs d’onde émises comprises entre 400 et 720 nm, soit des couleurs allant du violet jusqu’au rouge. Côté mécanisme, c’est une fois de plus variable, mais il s’agit souvent d’une histoire de molécules appelées luciférines qui, sous l’action de l’oxygène et de l'enzyme luciferase (5), mènent à la formation de photons, autrement dit de lumière. Un nez bioluminescent n’est donc pas impossible ! De nombreux organismes génétiquement modifiés existent d’ailleurs pour produire de la fluorescence, un phénomène un peu différent de la luminescence, qui consiste à émettre une couleur vive mais uniquement lorsqu’ils sont éclairés par une certaine lumière. Souvent, il s’agit d’introduire les gènes d’autres espèces naturellement disposées à briller. Il serait intéressant que les généticiens aient accès au patrimoine génétique de notre cher Rudolph, histoire de vérifier si le vieux barbu n’aurait pas glissé quelque amélioration à son meneur de traineau !

On trouve de la bio-luminescence naturellement chez des espèces très variées, comme ici le champignon Panellus stipticus ou l'insecte Lampyris noctiluca, communément surnomé ver luisant (Crédits: Ylem et  NEUROtiker)
 
 
Les chercheurs utilisent beaucoup d'organismes génétiquement modifiés pour produire de la fluorescence, ce qui permet par exemple d'observer des cellules précises. Ici, ce sont des nématodes Caenorhabditis elegans (Crédits : Sophie Labaude)


Allez, une dernière hypothèse avant de retrouver la féerie et le mystère de noël. Vous avez déjà entendu parler d’Heterorhabditis bacteriophora ? Il s’agit d’un nématode, un ver microscopique, qui parasite des insectes. Figurez-vous qu’il est doté d’une myriade de bactéries qui ont une double conséquence sur le pauvre insecte parasité : celui-ci change de couleur et devient d’un rouge soutenu, et il se met… à briller dans le noir ! Mieux encore, cette luminescence n’est pas restreinte aux insectes puisque de nombreuses descriptions font état de blessures chez l’humain qui brillent dans le noir ! Des blessures qui, étudiées de près, ont révélées la présence des bactéries en question (6). Et si le pauvre Rudolph était tout simplement… parasité !


Quand elles sont parasitées par des nématodes Heterhabditis bacteriophora, les larves deviennes rouges et luminescentes (Crédits: Sophie Labaude)




Références


(1) Hogg C., Neveu M., Stokkan K.-A., Folkow L., Cottrill P., Douglas R., Hunt D. M., Jeffery G. 2011. Arctic reindeer extend their visual range into the ultraviolet. Journal of Experimental Biology, 214: 2014-2019.

(2) Tyler, N. J. C., Jeffery G., Hogg C. R., Stokkan K.-A., Giguère N. 2014. Ultraviolet Vision May Enhance the Ability of Reindeer to Discriminate Plants in Snow. Arctic, 67: 159-166.

(3) Stokkan K.-A., Folkow L., Dukes J., Neveu M., Hogg C., Siefken S., Dakin S. C., Jeffery G. 2013. Shifting mirrors: adaptive changes in retinal reflections to winter darkness in Arctic reindeer. Proc Biol Sci., 280: 20132451.

(4) Dominy N. J. 2015. Reindeer vision explains the benefits of a glowing nose. Frontiers for young minds, 3: 18.

(5) Kahlke T., Umbers K. D. L. 2016. Bioluminescence. Curr. Biol,. 26: R313–R314.

(6) Colepicolo P., Cho K.W., Poinar G.O., Hastings J.W. 1989. Growth and luminescence of the bacterium Xenorhabdus luminescens from a human wound. Appl. Environ. Microbiol., 55: 2601–2606.







mercredi 4 avril 2018

Des parasites sous le sapin : deux livres à dévorer

Nous autres, blogueurs scientifiques, avons à cœur de partager des sujets qui nous passionnent mais qui apparaissent parfois au grand public comme ennuyeux, compliqués, voir peu ragoutants. Notre outil : la vulgarisation ! Ou l’art de rendre ces sujets ludiques, amusants et divertissants, en diffusant nos connaissances sans que ça n’en ait l’air. Mais parfois, on croise des petites œuvres de vulgarisation qui racontent si bien des sujets qui nous tiennent à cœur qu’on a juste envie de les partager tels quels. C’est le cas de ce petit livre que j’ai déniché à la bibliothèque : « La vie rêvée des morpions et autres histoires de parasites ». Forcément, un livre qui parle de parasites, il fallait que je l’ouvre.

Quoi de moins répugnant que des parasites suceurs de sang, des morpions qui grattent là où c’est indécent de se gratter, ou des vers solitaires qui squattent nos entrailles ? Pourtant l’auteur nous mitraille de petites anecdotes désopilantes et parfois stupéfiantes. De quoi voir notre condition d’être humain avec un peu plus d’humilité. Car il se pourrait bien que les parasites et autres petites bêtes soient bien plus liés aux humains et à leur histoire qu’on ne l’admet.

Par exemple, la perte des poils de nos ancêtres n’était-elle pas un prétexte de l’évolution pour nous débarrasser d’une myriade de squatteurs ? Certains grands conflits historiques n’auraient-ils pas eu une issue différente si une des armées n’avait pas été décimée par des parasites ? Saviez-vous que le surnom « Peaux-Rouges » des Indiens d’Amériques doit son origine aux moustiques ? Ou que la mode des selfies… aide à la propagation des poux ? Entres autres histoires de fourmis esclavagistes ou moustiques raquetteurs, ce livre permet à petits et grands d’apprendre un tas de choses sur ce monde formidable des parasites, de manière très accessible et illustré avec brio.



Pour les plus grands, un autre livre lui aussi paru cette année permet de découvrir avec délice mes parasites préférés, les parasites manipulateurs. Le livre « This is your brain on parasites » est déjà listé comme best-seller par une célèbre plateforme de vente en ligne. L’auteur ne s’est pas contenté de résumer les connaissances sur le sujet, elle a passé plusieurs années à préparer l’ouvrage, rencontrant beaucoup de chercheurs du domaine. Le livre a du coup une grande dimension humaine, avec l’histoire des découvertes de ces êtres étranges et des portraits plein de vie de ceux qui y ont contribué. Les faits scientifiques sont racontés avec une légèreté et un style qui n’enlèvent rien à leur exactitude.

L’auteur nous dévoile enfin la vérité, toute la vérité sur Toxoplasma gondii, ce parasite supposé nous faire aimer les chats, à grand renfort de références. Elle nous présente de nombreuses maladies sous un jour nouveau : parasites et pathogènes ne sont plus agents passifs déclencheurs de calomnies mais acteurs usant de stratégies subtiles et élaborées. Et surtout elle rétablie la place des parasites dans les écosystèmes naturels… et dans nos sociétés humaines. En décrivant leurs effets innombrables, on peut enfin toucher du doigt l’importance insoupçonnée de leur présence. Une importance qui fait frissonner.

L’ouvrage n’est pour l’instant disponible qu’en anglais, mais pour ceux qui comprennent la langue il reste très facile à lire puisqu’il vise le grand public. Il fait partie de ces livres qui font un peu peur au premier abord – de la science, un petit pavé et pas d’images – et qui se dévorent avant que l’on puisse s’en rendre compte. De l’humour, des anecdotes à croquer un peu partout, des faits qui nous laissent sans voix… En bref, si vous n’avez pas encore fini votre liste de noël, vous savez quoi ajouter !


Références


« La vie rêvée des morpions : Et autres histoires de parasites » de Marc Giraud (Auteur), Roland Garrigue (Illustrations). Edition Delachaux et Niestlé, Collection : L'humour est dans le pré. 2016.

« This is your brain on parasites: How tiny creatures manipulate our behavior and shape society », de Kathleen McAuliffe. Edition Houghton Mifflin Harcourt. 2016.



Related Posts Plugin for WordPress, Blogger...