Affichage des articles dont le libellé est croissance. Afficher tous les articles
Affichage des articles dont le libellé est croissance. Afficher tous les articles

jeudi 19 mars 2020

Nyctinastie toi-même !


Mais que veut dire ce drôle de mot ? C’est une nouvelle insulte à la mode ? La dernière lubie alimentaire des gens nés à la pleine lune de février de l’année 2003 ? Une position de yoga ? Une crème hydratante à base de rognures d’ongles ? Une dynastie de nyctalopes ? Une maladie causée par un empoisonnement à la nicotine ?

Et surtout qu’est-ce que ça vient faire dans la rubrique de botanique ?

Pas de panique ... je vous explique tout ! [Source]

Nyctinastie vient du grec nux qui signifie « nuit » et nastos qui se rapporte à l’idée d’un mouvement de fermeture, appliqué aux plantes terrestres. Donc, la nyctinastie décrit les mouvements des plantes durant la nuit.

Et là je vous entends vous exclamer intérieurement « Hein ? Mais comment ça les plantes ça bouge ? Pourtant mon géranium sur mon appui de fenêtre n’a pas vraiment l’air d’être équipé pour courir un marathon ! »

Que nenni jeune Padawan ! Toutes les plantes sont capables de mouvements, et ce même si elles sont des organismes fixés (il existe d’autres organismes fixés tels que les coraux et les éponges). On pensera par exemples aux plantes se tournant progressivement vers une source de lumière, ou les spectaculaires croissances en accéléré des paysages entiers dans la nature.

Mais alors, comment les plantes sont-elles capables de bouger, quand bien même elles sont fixées ? Et surtout, à quoi ça peut bien leur servir… puisqu’elles ne se déplacent pas de tout manière ? Est-ce que la fermeture des feuilles la nuit correspond à une phase de « sommeil » pour la plante ? Pour écrire cet article je me suis basé sur l’article de revue de Peter V. Minorsky publié dans Biological Review en 2019.

Comment ça marche ?

La nyctinastie s’observe chez de nombreuses plantes qui ont la particularité de voir leurs feuilles se replier une fois la nuit venue. Un peu comme une figure en origami, qui serait la plus étendue possible durant la journée pour maximiser l’absorption des rayons du soleil, puis se ferait la plus petite possible durant la nuit et surtout, qui se positionnerait en position verticale.



Un exemple de nyctinastie chez deux plantes Desmodium gyrans (gauche) et Lotus creticus (droite) [Source]

Les mécanismes cellulaires et moléculaires qui gouvernent ces mouvements sont différents selon les espèces, mais dans tous les cas, il s’agit d’une histoire de turgescence et de plasmolyse. Encore des mots compliqués, mais ne partez pas je vais expliquer ça immédiatement.

La turgescence, c’est quand les cellules sont gonflées d’eau et occupent un espace important, par opposition avec la plasmolyse où les cellules sont toutes ratatinées et flasques. Un peu comme une éponge à vaisselle qui se gorge d’eau lorsqu’elle est sous le robinet … et perd toute son eau quand on l’oublie à côté de l’évier !

Ces deux mécanismes, turgescence et plasmolyse, ont pour conséquence directe de modifier l’aspect et la forme de la plante. De la même manière que notre éponge va être plus grosse lorsqu’elle est gorgée d’eau, les tissus de la plante vont être plus rigides lorsque les cellules sont en turgescence… et à l’inverse, les tissus deviendront plus mous lorsque les cellules entrent en plasmolyse. Si ces cellules, qui changent de taille à volonté, sont situées à des endroits stratégiques de la plante, elles vont lui permettre de changer l’orientation de ses feuilles selon si elles sont turgescentes ou plasmolysées.

Les tissus qui sont capables de se contracter ou de se dilater, selon leur état de turgescence, ne sont pas répartis n’importe comment dans la plante : ils sont situés dans la partie appelée pulvinus, qui est un renflement à la base des feuilles. C’est là que tout se joue pour que les feuilles puissent avoir ce mouvement de nyctinastie.


Localisation des tissus extenseurs et fléchisseurs dans le pulvinus permettant aux feuilles d'avoir des mouvements contrôlés. [Source]

Au niveau du pulvinus, on constate deux types de tissus : les tissus fléchisseurs et les tissus extenseurs. Les mouvements d’eau dans les tissus fléchisseurs et extenseurs sont complémentaires et sont régulés par la plante elle-même, peu importe la quantité d’eau disponible dans le sol. Si la plante a besoin d’avoir ses feuilles ouvertes au maximum dans la journée, alors les tissus extenseurs seront gonflés d’eau. En revanche, si la plante doit se fermer pendant la nuit, ce sont les tissus fléchisseurs qui seront remplis d’eau et permettront à la plante de refermer ses feuilles. Cela signifie qu’en perdant leur eau, ces tissus peuvent se contracter (car les cellules sont alors plus petites) et permettent à la plante de faire bouger ses feuilles.

Au final, la plante est capable de faire ses mouvements uniquement en jouant sur la quantité d’eau que contiennent ses cellules !

Mais à quoi ça sert ? Ce qu’on pensait jusqu’à présent …


Il faut remonter aux études de Charles Darwin lui-même pour trouver une hypothèse quant à l’utilité du phénomène de nyctinastie : selon lui, il pourrait s’agir d’un mécanisme de la plante pour éviter la trop grande perte de chaleur par les feuilles lorsque la nuit arrive. Moins de surface exposée à l’extérieur est en effet synonyme de moins de dommages en cas de froid intense. Effectivement, ce mécanisme se retrouve chez les plantes de très haute montagne (comme Espeletia schultzii dans les Andes) et peut représenter une préservation de température de plus de 2°C (Smith 1974) ! Ça ne parait pas grand-chose comme ça, mais quand on est proche de 0°C, cela fait toute la différence car la plante évite ainsi de gros dommages à ses tissus par le gel.

Une autre utilité de la nyctinastie serait de permettre à la plante de « s’ébrouer » quotidiennement et ainsi éviter l’accumulation d’eau à la surface de ses feuilles. En soi, l’accumulation d’eau en elle-même n’est pas forcément un problème (bien qu’une couche d’eau à la surface des feuilles réduise l’efficacité de la photosynthèse) mais dans les pays tropicaux surtout, les bactéries et champignons profitent de la présence d’eau pour se développer. Et donc, potentiellement, une mince couche d’eau à la surface d’une feuille est un milieu favorable à la croissance de pathogènes ! La nyctinastie pourrait donc être perçue dans ce cas comme un phénomène de protection de la plante contre les pathogènes, puisque l’eau située à la surface est régulièrement retirée, mais cela reste encore une hypothèse à tester.

Dans le même temps, les plantes des milieux secs bénéficient de la nyctinastie car elle permet de réduire les pertes en eau par évapotranspiration durant la nuit. En effet, la feuille étant repliée sur elle-même, les échanges avec l’atmosphère en sont réduits … de même que la transpiration, et donc que les pertes d’eau.

Enfin (et c’est l’hypothèse la plus répandue), la nyctinastie est un mécanisme présent chez certaines plantes pour éviter l’herbivorie sur les feuilles. Effectivement, en réduisant sa surface foliaire durant la nuit, la plante rend moins accessible les parties consommables de son anatomie… les herbivores seront d’autant plus frustrés qu’ils se rabattront sur d’autres plantes plus faciles à dévorer ! Également, lors de la fermeture de la feuille, certaines plantes vont avoir des épines qui se positionnent vers l’extérieur pour dissuader encore une fois les herbivores de s’aventurer trop proche, évitant ainsi de se faire manger !

… et ce qui est nouveau : l’hypothèse tritrophique !

Encore un mot compliqué ! Tritrophique, cela décrit simplement une relation triangulaire entre la plante, les herbivores et les prédateurs des herbivores (donc carnivores).

Les plantes sont au départ face à un problème : comment se protéger des herbivores, en particulier les plus petits que sont les insectes mangeurs de feuilles ? Une plante peut repousser les insectes à l’aide de composés toxiques… mais lorsque cela ne suffit plus, quelle stratégie adopter pour éviter de se faire manger ?

Tout simplement … en facilitant la tâche pour les prédateurs dans la recherche de leurs proies ! Et c’est là que pourrait intervenir le phénomène de nyctinastie, à plusieurs niveaux.

D’abord, on en a déjà parlé, en se refermant la nuit les feuilles réduisent leur surface puisqu’elles se replient sur elles-mêmes. Si on extrapole ça à l’échelle de la canopée, cela représenterait une grosse diminution de la place que prennent les feuilles. En conséquence, il y aurait plus d’espaces libres entre les arbres. Or, certaines études mentionnent que les prédateurs aériens comme les chouettes ou les chauves souris ont besoin de plus d’espace pour évoluer dans leur milieu et pratiquer une chasse efficace (Raino et al 2010, Holt et al 2008) : la nyctinastie permettrait donc d’ouvrir des « couloirs » dans la végétation pour que les prédateurs attrapent leurs proies plus facilement. D’un point de vue acoustique également, le fait d’avoir une végétation moins dense la nuit permet aux sons de se propager plus loin (Arlettaz et al 2001) et donc aux prédateurs de détecter plus efficacement leurs proies. Enfin, la réduction de la masse foliaire pourrait permettre aux odeurs de se diffuser plus loin (Randlkofer et al 2010, Aartsma et al 2017) et de rendre ainsi les proies plus facilement détectables pour leurs prédateurs.

Pour résumer, la nyctinastie est donc un mécanisme qui permet une préservation des plantes de manière indirecte, car la réduction de la surface foliaire pendant la nuit va augmenter l’efficacité de chasse des prédateurs sur les proies, et ces dernières auront moins de temps pour aller grignoter tranquillement les feuilles.

Le mot de la fin

Indirectement, la nyctinastie est donc une innovation évolutive qui permet à certaines plantes de mieux survivre et de produire une descendance en plus grand nombre. Ce mécanisme est assez répandu à travers l’histoire des plantes pour avoir évolué de manière indépendante plusieurs fois, mais il est surtout présent dans la famille des Leguminosae (les légumineuses telles que les pois chiches, haricots verts, etc.). Une des hypothèses pouvant expliquer pourquoi on retrouve la nyctinastie plus souvent dans cette famille viendrait du fait que les légumineuses ont une teneur en azote plus élevée que les plantes des autres familles. Pour les insectes et autres herbivores, cela signifie que les feuilles des légumineuses sont plus nutritives… donc plus recherchées comme source de nourriture ! En réponse à cela, il est donc fort probable que la nyctinastie ait été activement sélectionnée dans cette famille, pour essayer de préserver au maximum les feuilles en les rendant moins accessibles aux insectes durant la nuit.

Bibliographie

Aartsma, Bianchi, van der Werf, Poelman (2017) Herbivore-induced plant volatiles and tritrophic interactions across spatial scales. New Phytologist 216, 1054 – 1063

Arlettaz, Jones, Racey (2001) Effect of acoustic clutter on preydetection by bats. Nature 414, 742 – 745

Holt, Layne (2008).  Eye  injuries  in  long-eared  owls  (Asio  otus): prevalence and survival. Journal of Raptor Research 42, 243 – 247.

Minorsky (2019) The functions of foliar nyctinasty: a review and hypothesis. Biological Review 94, pp. 216 – 229.

Oikawa et al. (2018) Ion Channels Regulate Nyctinastic Leaf Opening in Samanea saman. Current Biology 28, 2230–2238

Rainho, Augusto, Palmeirim (2010) Influence of vegetation clutter on the capacity of ground foraging bats to capture prey. Journal of Applied Ecology 47, 850 – 858.

Randlkofer, Obermaier, Hilker, Meiners (2010) Vegetation complexity — The influence of plant species diversity and plant structures on plant chemical complexity and arthropods. Basic and Applied Ecology 11, 383 – 395.

Smith (1974) Bud temperature in reference to nyctinastic leaf movement in an Andean giant rosette plant. Biotropica 6, 263 – 266.

lundi 26 novembre 2012

Voyage sous les Tropiques : à la découverte des Palmiers


Par ce temps froid et venteux (l'automne se termine et l'hiver commence à pointer le bout de son nez), il est bon de penser à des lieux ensoleillés synonymes de vacances. C'est pour cela que j'aimerais vous parler de plantes associées aux paysages de cartes postales : les Palmiers.

Dans un précédent article, j’avais évoqué l’existence de cette grande famille de plantes à fleurs assez originale, les Palmiers, appelés aussi Arecaceae. C’est la seule famille présente dans l’ordre des Arecales, elle-même présente dans le groupe des Commelinids au sein des Monocotylédones (voir article précédent). Ça, c’était pour l’aspect classification et phylogénie. Intéressons nous à présent aux particularités de cette famille.
La famille des Palmiers regroupe à l’heure actuelle environ 2400 espèces, réparties dans 183 genres (Dransfield et al. 2008). Toutes ces espèces, sauf exceptions, se retrouvent au niveau de la zone tropicale à la surface de la Terre.

Carte de la répartition mondiale des espèces de Palmiers. Source : Dransfield et al. 2008

Il est intéressant de noter que lorsqu’on voit un Palmier, eh bien… On le reconnait au premier coup d’œil. N’importe quel enfant inscrit à l’école primaire dessinera, si on lui demande de représenter une île déserte, quelque chose d’approchant :

Trois vaguelettes, un soleil, un monticule de sable... et un Palmier : c'est  la représentation classique d'un île déserte [source]

Et du même coup, on se rend compte que l’imagerie du Palmier est connue depuis notre plus tendre enfance. Mais si c’est une chose de représenter un Palmier en trois coups de crayon, c’en est une autre de savoir ce qui se cache derrière ces feuilles vertes qui protègent le naufragé des rayons du soleil.
Savez vous en effet que les Palmiers ne sont pas des arbres ? Eh oui, ils ne possèdent pas de tronc à proprement parler ! Mais alors, comment est-il possible que ces plantes mesurent parfois plusieurs mètres de haut et soit dures comme du bois… sans en être réellement ?

Reprenons les choses depuis le début. La croissance des plantes est initiée (dans un premier temps) aux extrémités de l’individu. En particulier, on appelle les zones de croissance des méristèmes. On trouve ces méristèmes au niveau des tiges (méristèmes caulinaires) et au niveau des racines (méristèmes racinaires). Ces zones sont ce que l’on appelle communément les bourgeons.
Schéma d'une plante avec la localisation des méristèmes. Modifié d'après [source]

Oui mais voilà, si on s’arrêtait là, tout serait bien trop simple. Certaines plantes possèdent deux types de méristèmes : primaires et secondaires. Tandis que les méristèmes primaires permettent la croissance en longueur de la plante et sont présents au tout début de sa croissance, à l’intérieur même de la graine, les méristèmes secondaires se mettent en place… secondairement, et permettent la croissance en épaisseur de la plante. Ces méristèmes sont appelés cambium (ou Assise Génératrice Libéro-Ligneuse) et phellogène (ou Assise Génératrice Subéro-Phellodermique).

Schéma d'une coupe dans un tronc, montrant les différentes couches produites par le cambium et le phellogène. Les flèches verticales montrent les zones de croissance cellulaire en épaisseur. [Source]

D’après la figure précédente, on peut voir que le tronc d’un arbre est constitué de plusieurs couches successives. Si on regarde en commençant par la partie visible de l’arbre, à l’extérieur, la première couche rencontrée est l’écorce. Cette couche imperméable et protectrice est constituée par le liège, ou suber, qui est produit par le phellogène (ou AGSP, voir plus haut) qui est donc le premier méristème secondaire rencontré chez un arbre, en partant de l’extérieur. A titre d’information, les bouchons de bouteille sont faits en liège, qui est en réalité l’écorce des Chênes Quercus suber, récoltée annuellement. Ce matériau est utilisé pour cet usage du fait de sa grande imperméabilité.
Si on avance vers l’intérieur du tronc, on tombe sur le phelloderme, une mince couche cellulaire produite elle aussi par le phellogène. Cette couche fait partie de l’écorce mais reste généralement sans rôle particulier.
La couche suivante est le liber, aussi appelé phloème secondaire : c’est un tissus qui conduit la sève élaborée, riche en sucres, depuis les feuilles vers les racines. Il est produit par le cambium (ou AGLL, voir plus haut), le second méristème secondaire, vers l’extérieur de la plante.
La couche suivante est l’aubier : c’est la partie vivante du bois. Il s’agit du xylème secondaire, également produit par le cambium vers l’intérieur de la plante. Il sert à conduire la sève brute, constituée essentiellement d’eau et de sels minéraux, depuis les racines jusqu’aux feuilles. Par la suite, les cellules de l’aubier vont se remplir de lignine et subir ce que l’on nomme la duraminisation : on obtiendra ainsi le bois de cœur, encore appelé duramen.

Coupe transversale schématique d'un tronc. Notez qu'ici, l'écorce rassemble le suber, le phellogène et le phelloderme. [Source] 

La production de bois permet, à postériori, la formation d’un tronc, suite à la rigidification des tissus végétaux. Evolutivement, la présence du tronc peut s’expliquer par une constante compétition par les plantes au niveau de l’occupation du volume par les structures photosynthétiques  : la présence d’un « squelette » constitué par le tronc permet à la plante de déployer ses feuilles dans toutes les directions et ainsi de maximiser leur exposition à la lumière. Vous imaginez bien qu’avoir un étagement des feuilles permet d’augmenter la surface photosynthétique pour une même surface au sol… C’est un peu comme avec nos immeubles : on garde la même surface au sol qu’une maison d’un étage, mais on empile des appartements, donc tout le monde au final a plus de place pour vivre.
L’augmentation de la taille à l’aide d’un tronc permet également d’accroitre la capacité de dispersion des fruits et des graines. C’est logique : lancez une balle depuis le pied d’un arbre et depuis sa cime et vous verrez qu’elle parcourra plus de distance si vous vous situez au sommet de l’arbre.
  
Tout ça c’est bien joli, mais… les Palmiers n’ont pas de tronc à proprement parler. En effet, une des particularités des Monocotylédones (voir article précédent) est d’avoir perdu secondairement, au cours de l’évolution, la capacité de former des structures secondaires. Ces plantes ne possèdent tout simplement pas de méristème secondaire ! Comment est-il possible, dans ce cas, que les Palmiers soient des plantes dont la taille dépasse aisément plusieurs mètres ?
Eh bien, ces plantes possèdent d’autres structures qui leurs permettent aussi de se hisser vers la lumière. La partie analogue à un tronc d’arbre chez un palmier s’appelle un stipe, et c’est ce stipe qui permet d’étendre la couronne de feuille au soleil, loin au dessus du sol.
Ce stipe est constitué d’un grand nombre de fibres, rigidifiées par la lignine (toujours elle). Dans un stipe, on trouve un très grand nombre de fibres conductrices de sève, associées souvent avec un ensemble de fibres de soutien.

Détail d'une fibre conductrice associée à une fibre de soutien (en coupe transversale). En noir, les fibres de soutien ; en pointillés, le phloème ; en blanc (mx et px), du xylème ; en hachuré, du parenchyme (c'est un tissus de soutien). Il n'y a pas de tissus secondaires. Source : Thomas & De Franceschi 2012
Voici les fibres, replacées dans le contexte entier du stipe (à g., extérieur, à dr., intérieur), pour les deux types d'organisation chez les Palmiers (Thomas & De Franceschi 2012)

Bien qu’il n’existe pas de croissance secondaire à proprement parler chez les Palmiers, l’accumulation et l’agrégation des fibres enchevêtrées entre elles permet au stipe d’augmenter petit à petit en épaisseur (surtout au niveau de la base), ce qui confère au Palmier dans son entier sa stabilité et sa solidité.
D’un point de vue de la croissance, comme je l’ai dit plus haut, les Palmiers n’ont pas de méristèmes secondaires donc pas de croissance secondaire à proprement parler : un seul méristème initie la croissance de la plante, d’où la présence d’une couronne de feuille unique au sommet et l’absence de branches. Chaque année, les feuilles de l’année précédentes meurent et le Palmier initie la croissance de nouvelles feuilles juste au dessus des anciennes. On pourrait dire ainsi qu’un Palmier est le résultat d’un emboitement successif de feuilles, année après année. Mais on ne peut pas parler de vrai tronc car il n’y a pas d’accroissement en largeur, suite à l’absence de méristèmes secondaires.

Différentes coupes transversales de stipes de Palmiers, mettant en évidence les fibres vasculaires. [Source]


Mais il ne faut pas croire que les Palmiers sont tous pareils : c’est une famille de plantes à fleurs où l’on trouve une diversité de formes, de tailles, de couleurs impressionnantes. Ainsi, si la plupart des Palmiers possèdent des stipes « conventionnels », on trouve des Palmiers rampants et grimpants. Si certains Palmiers peuvent atteindre 15 mètres, d’autres sont nains et ne dépasseront jamais un mètre de hauteur.

Calamus nabariensis, détail du stipe (à g.) et Calamus longipina, vue d'ensemble (à dr.) : deux Palmiers grimpants. [Source]


Chamaerops humilis (à g.) et Actinorhytis calapparia (à dr.) : notez la différence de taille... [Source]

Certains Palmiers ont des stipes à épines alors que d’autres possèdent un stipe complètement lisse ou bien fibreux.
Calamus wailong (à g.) et Howea forsteriana (à dr.). Notez les stipes épineux à divers degrés du Calamus et celui parfaitement lisse du Howea. [Source]

Mais le plus impressionnant à mon sens reste le Coco-Fesse (nom commun du Lodoicea maldivica), qui possède un fruit en forme de… bin, je vais pas vous faire un dessin, qui peut peser jusqu’à 25 kilos !

Fruit de Lodoicea maldivica, avant (à g.) et pendant (à dr.) la germination. [Source]

Les fruits du Cocotier Cocos nucifera (les noix de Cocos) sont également capables de prouesses au niveau de la capacité de germination : on les retrouve parfois à des milliers de kilomètres de distance de leur point de départ, portés par l’océan. S’ils échouent sur une plage tropicale, ils sont capables de germer très rapidement et de prendre racine sur le rivage.
Une noix de Coco germe après avoir été transportée par la mer. [Source]

Chez les Palmiers, on trouve aussi une grande diversité de feuilles, bien qu’elles soient toutes construites sur le même modèle de base : lors de leur formation, elles sont repliées comme un pliage d’origami, puis elles se déplient pour prendre leur forme définitive. On distingue souvent deux grands types de feuilles, parmi lesquels on trouve toutes sortes de variations morphologiques : il s’agit des feuilles pennées (comme des plumes) ou palmées (comme une main).

Areca vestiaria (à g.) possède des feuilles pennées, tandis que Serenoa repens (à dr.) possède des feuilles palmées. [Source]

Pour conclure, je dirais qu’au sein du règne végétal, il ne faut pas se fier aux apparences… et que même s’ils en ont l’air, les Palmiers ne sont pas des arbres et recèlent une diversité insoupçonnée au premier regard.

Bibliographie 

Dransfield et al. 2008. Genera Palmarum. Royal Botanic Garden, Kew

Thomas R & De Franceschi D. 2012. First evidence of fossil Cryosophileae (Arecaceae) outside the Americas (early Oligocene and late Miocene of France): Anatomy, palaeobiogeography and evolutionary implications. Review of Palaeobotany and Palynology. 171:27-39

Pour les photo, l'immense ressource d'Internet en général et le site http://palmweb.org/ en particulier.
Related Posts Plugin for WordPress, Blogger...