Affichage des articles dont le libellé est Forêt. Afficher tous les articles
Affichage des articles dont le libellé est Forêt. Afficher tous les articles

mardi 22 août 2017

Pourquoi j’épluche des souches d’arbres dans les forêts irlandaises

Cela fait deux jours que nous sommes coupées du monde, exilées au fin fond de la campagne irlandaise, agenouillées dans les ronces sous une météo capricieuse. Mes collègues sont aussi couvertes de boue que moi. Armées d’outils de jardinage et de pinces à dissections, nous épluchons méticuleusement de vieilles souches de pin.

Après trois années de travail acharné (oui bon… de travail quoi !) à étudier l’interaction fascinante entre des parasites manipulateurs* et leurs hôtes zombifiés, thèse en poche et officiellement Docteur, je me suis exilée en Irlande pour une nouvelle mission scientifique. La bestiole qui m’intéresse désormais s’appelle Hylobius abietis. Grand charançon du pin, pour les intimes. Cet insecte, comme son nom l’indique, se retrouve principalement là où il y a des pins. Et pour cause, c’est dans les souches de cet arbre, voire dans d’autres résineux, que l’animal se développe. Les femelles sont notamment sensibles à l’odeur de pins fraichement coupés, et viennent y pondre leurs œufs. Bien cachée sous l’écorce, la larve qui sort grignote tranquillement son abri, se creusant un chemin vers la sortie et se métamorphosant au passage en pupe, une sorte de stade intermédiaire, puis en adulte.

Grand charançons du pin au stade larvaire, pupe et adulte (Crédit : Sophie Labaude)


Oui mais voilà, quand l’adulte émerge enfin à la lumière du jour, après avoir passé plusieurs mois à se nourrir de bois en décomposition, l’envie de goûter au bois frais se fait rapidement sentir. Délaissant sa souche nourricière, le voilà qui part boulotter de jeunes pins fraichement plantés. Or, la gestion actuelle des forêts de pins fait que des parcelles entières sont coupées en même temps. A la fin de l’été, ce sont donc des centaines, des milliers d’adultes qui émergent de cette nurserie géante ! Et tout ce beau monde n’a pas besoin de chercher bien loin pour se nourrir, d’autres parcelles proches sont invariablement peuplées de pins fraichement plantés. Ainsi, les pratiques sylvicoles actuelles couplées aux habitudes alimentaires de l’insecte font de lui le principal ravageur des plantations de résineux en Europe. La tragédie se joue sur deux tableaux. Tragédie économique d’une part, car en plus de devoir remplacer les arbres tués par les charançons, des traitements préventifs sont devenus indispensables, pour un coût à l’échelle de l’Europe qui avoisinerait les 150 millions d’euros par an. Tragédie environnementale d’autre part, puisque les méthodes de lutte actuelles incluent une utilisation massive de pesticides.

Le terrifiant assassin des pins, Hylobius abietis (Crédits : Sophie Labaude)

Pour limiter ces deux tragédies, on pourrait changer les pratiques sylvicoles, éviter ces monocultures qui génèrent invariablement des pertes considérables sitôt qu’un petit ravageur pointe le bout de son nez. Solution pour l’instant incompatible avec les exigences de rentabilité. Autre idée : trouver une méthode de lutte qui soit à la fois efficace et inoffensive pour les autres espèces et l’environnement. En somme, l’idée serait de remplacer les pesticides par une lutte biologique, et si possible peu coûteuse. La lutte bio, c’est une pratique qui se développe contre beaucoup de ravageurs, qu’ils soient animaux, végétaux ou micro-organismes divers. Pour lutter contre des insectes, on peut les exposer à leurs prédateurs. On connaît notamment l’exemple des coccinelles asiatiques lâchées sur les cultures pour les protéger des pucerons et autres ravageurs. En ce qui concerne le grand charançon du pin, un ennemi offre des pistes particulièrement prometteuses en termes de lutte bio : des nématodes entomopathogènes, ou tueurs d’insectes. Des parasites donc. Eh bien oui, je n’ai pas atterri en Irlande par pur hasard !

Les nématodes constituent un groupe d’organismes vermiformes, tout petits et qu’on trouve à peu près partout. Parmi les dizaines de milliers d’espèces que l’on connait, il y a deux groupes qui montrent un intérêt tout particulier : ceux des genres Heterorhabditis et Steinernema. Ces espèces ont en effet une forte affinité pour les larves de notre grignoteur de pins. Les jeunes nématodes ont une vie libre qu’ils passent à chercher un hôte. Une fois la victime trouvée, ils s’y engouffrent par tous les trous possibles (vous voyez l’idée) et y régurgitent une armée bactéries. Ces bactéries sont les alliées des nématodes. Ce sont elles qui vont mettre le coup de grâce à la pauvre larve, et ce sont aussi elles qui vont commencer à pré-digérer son contenu. Les nématodes se nourrissent dans la bouillie résultante, se reproduisant et se multipliant allégrement jusqu’à l’épuisement des ressources de l’hôte. Trois semaines après l’infection, ce sont des milliers de nouveaux nématodes qui suintent du cadavre, prêts à infecter de nouveaux insectes.

Un nématode de l'espèce Heterorhabditis downesi vu au microscope (Crédits : Sophie Labaude)

Les nématodes, et notamment les espèces susceptibles d’éliminer les charançons, sont connus depuis très longtemps, y compris pour leurs propriétés entomopathogènes. Il y a même plusieurs espèces qui sont déjà utilisées en matière de lutte biologique ! Mais alors qu’est-ce qu’on attend pour déverser des millions de nématodes dans nos forêts ? Pas si vite. L’élaboration d’un traitement dans les règles de l’art soulève de nombreuses questions, auxquelles il vaut mieux répondre avant de se lancer.

Beaucoup d’études se sont ainsi attachées à étudier le risque environnemental d’un déversement massif de nématodes : est-ce qu’ils attaquent des espèces non ciblées ? Est-ce qu’ils persistent dans l’environnement après le traitement ? Est-ce qu’ils entrent en compétition avec des espèces locales ? Pas question de troquer une catastrophe écologique (pesticides) contre une autre (invasion incontrôlée). C’est justement un des plus gros soucis liés à la lutte biologique : les coccinelles asiatiques dont je parlais plus haut sont devenues invasives, impactant sévèrement nos coccinelles locales. Il faut aussi mettre au point le traitement le plus efficace et le moins coûteux : quelle espèce choisir parmi les dizaines de finalistes ? Comment procéder à l’application du traitement ? On pourrait verser les nématodes mélangés à de l’eau, mais encore faut-il déterminer la concentration en nématodes, l’endroit où verser (autour des souches ? dessus ? sur les jeunes pins ?), la quantité optimale… On pourrait aussi répandre des insectes morts parasités de nématodes. Il ne faut pas non plus négliger les aspects techniques : est-il possible de produire industriellement de grandes quantités des espèces voulues ? Dispose-t-on des machines et des moyens nécessaires pour les traitements ? Inutile de mettre un place un traitement qu’il sera impossible d’appliquer. Et tout un tas d’autres questions susceptibles de bouleverser les résultats des interrogations précédentes : le type de sol ou le climat influencent-t-ils la survie des nématodes, et donc leur efficacité ? Dans quelles conditions de stockage avant utilisation obtient-on la meilleure efficacité ? Etc.

Les différents stades de vie du grand charançon du pin (Crédits : Sophie Labaude)

Bref, avant de déverser joyeusement des millions de parasites dans la nature, des années d’études sont nécessaires. A l’heure actuelle, nous arrivons à la fin du processus. Beaucoup de tests ont déjà été effectués au laboratoire ou à petite échelle, pour étudier l’effet de tel ou tel paramètre. Quelques espèces ont été retenues. Certaines sont déjà produites industriellement (c'est-à-dire dans des incubateurs, sans avoir besoin de millions d’insectes hôtes) par des compagnies spécialisées. Dans l’équipe où je travaille, nous en sommes aux derniers tests : les expérimentations sur le terrain à grande échelle. En situation réelle. Nous avons sélectionné dans toute l’Irlande des parcelles de pins coupés l’année dernière et qui abritent des charançons. Nous avons ensuite répandu les nématodes selon les résultats combinés de toutes les recherches menées au cours des dernières années. Pour ça, on a fait venir une énorme machine dotée de pulvérisateurs. Vient maintenant l’heure du bilan. Pour évaluer l’efficacité du traitement, deux méthodes. D’une part, on a posé des pièges, sur une sélection de souches traitées et de souches non traitées. Ces petites tentes sans issue permettront d’attraper tout charançon ayant réussi à survivre jusqu’à l’âge adulte. Il suffira alors de comparer le nombre de charançons entre les souches traitées et les souches contrôle. Deuxième méthode, décortiquer les souches pour repérer chaque charançon, qu’il soit larve, pupe ou adulte encore au chaud, et déterminer ceux qui sont en bonne santé et ceux qui sont parasités. Les résultats à la fin de l’année !


Les pièges sont posés au dessus des souches de pins pour capturer les charançons adultes qui en émergent (Crédits : Sophie Labaude)
Engin mi-agricole, mi-forestier, cette machine nous permet de pulvériser le traitement de parasites sur chaque souche (Crédits : Sophie Labaude)


Entre planification, préparation, visite des sites, sélection, recherche de partenaires locaux (nous travaillons en étroite collaboration avec la compagnie irlandaise des forêts), délimitation des parcelles, choix des souches à traiter, traitement, installation des pièges, récolte des individus et échantillonnage des souches, une bonne partie de mon travail se passe donc dans la forêt, en faveur de ce projet en partie financé par l’Union Européenne. Le reste de mon temps, je travaille sur d’autres thématiques, toujours liées aux nématodes, à propos de cafards, de scarabées, d’insectes en plastiques, de circuits électroniques et de larves qui changent de couleur et qui brillent dans le noir. La suite au prochain épisode !


Pour en savoir plus :

Page du projet Biocomes, dans lequel s’inscrit cette recherche


* Mes articles à propos des parasites manipulateurs :

De l’utilité de créer son propre zombie… ou le monde fabuleux des parasites manipulateurs
Le suicide du criquet, une aubaine pour la forêt
Parasites : une de leurs techniques diaboliques au service de la médecine
L’indolence poussée à son paroxysme : quand les parasites manipulateurs laissent les autres manipuler
Trois utilités insolites des parasites
Stockholm inversé : quand des parasites protègent leurs victimes



mercredi 18 novembre 2015

Aventures brésiliennes – A la découverte de l’Amazonie

Salut tout le monde ! Voici le second article qui parle de mon périple scientifique au Brésil (si vous n’avez pas lu le premier, c’est ici que ça se passe).
Après mon travail à l’herbier de Rio de Janeiro, je suis parti réaliser un travail similaire dans les herbiers de Belém. Là encore, de nombreux spécimens de la région et surtout, provenant de collectes locales.
Comme il s’agit du même travail qu’à Rio, je ne vais pas m’attarder dessus. Après Belem, je suis allé rejoindre d’autres chercheurs à Manaus… pour aller collecter des plantes au cœur de l’Amazonie.

Voilà. C'est la forêt. Plutôt chouette comme environnement de travail non ? 
Cet article va donc vous présenter le travail de terrain réalisé dans la forêt amazonienne. Mais d’abord, pourquoi aller échantillonner ? Le but ici, était de récolter les plantes du genre Crudia, afin d’avoir accès à du matériel « frais » c'est-à-dire non issu d’échantillons d’herbier. Pourquoi ? Eh bien je m’intéresse à développer des marqueurs moléculaires et pour ça, il me faut de l’ADN de bonne qualité. Pas de panique, j’explique. Pour étudier l’évolution des organismes et les relations de parenté qui existent entre eux, on réalise ce qu’on appelle des arbres phylogénétiques. Je ne vais pas re-décrire tout le principe en détail, c’est très bien expliqué là (autre lien vers un autre article du blog). Pour obtenir ces arbres, il est nécessaire d’utiliser des caractères, moléculaires ou morphologiques. Dans mon cas, les espèces du genre Crudia sont morphologiquement très proches et il est difficile de trouver des caractères assez variables pouvant être utilisés pour reconstruire les arbres. Je me suis donc tourné vers l’utilisation de caractères provenant des séquences d’ADN, nécessitant l’utilisation de marqueurs (voilà, on y arrive !). En biologie moléculaire, en tout cas en phylogénie, ce qu’on désigne par « marqueur » est une portion du génome. Peu importe la localisation dans le génome, ce qui nous intéresse ici n’est pas la fonction de cette portion d’ADN mais sa séquence d’ADN. Une fois cette séquence récupérée (par tout un tas de manipulations de laboratoires dont je vous fais grâce), on peut la comparer à d’autres, et en faisant ainsi, reconstruire les liens de parentés entre les êtres vivants. Jusqu’à maintenant, j’ai utilisé l’ADN récolté sur des échantillons d’herbier, car je n’ai pas eu l’occasion d’aller sur le terrain. Sauf que le problème, c’est que cet ADN est souvent dégradé ou altéré par un mauvais conditionnement (traitement par des produits conservateurs, chauffage excessif, insecticides, etc). Et il est difficile de travailler sur cet ADN pour développer de nouvelles techniques d’études. Une solution à cela est de travailler avec du matériel provenant d’échantillons « frais », qui n’ont pas ou peu été altérés par les processus de conservation et qui permettent d’obtenir de l’ADN de meilleure qualité. Et un moyen infaillible d’avoir accès à du matériel frais… c’est d’aller le chercher soit même. C’est pour cette raison que je suis parti faire du terrain en Amazonie. 

Collecte dans la Reserva Ducke

Les trois premiers jours de travail de terrain ont été menés dans la Reserva Ducke.

La reserva Ducke, c'est le gros carré vert pointé par la flèche rouge. [Source : GoogleMaps]

Cette réserve a été créée officiellement en 1959 suite à la demande d’Adolpho Ducke, qui avait repéré le potentiel de cette zone dès 1955. C’est un carré de 10 km par 10 km, qui renferme une zone de forêt humide sur terre ferme (littéralement, « floresta tropical úmida de terra firme » en portugais), ce qui signifie concrètement que les arbres n’ont jamais les pieds dans l’eau. De nombreuses études sont menées dans cette forêt et un grand nombre d’arbres et de plantes sont connus et référencés sur une carte, avec un numéro. Ce qui est bien pratique lorsqu’on cherche une espèce en particulier, comme c’est notre cas ici. 
L’équipe de travail était composé de Gleison, notre guide et grimpeur, Rafael, étudiant au doctorat, Giulia, étudiant en seconde année d’université en biologie, et moi-même. Alors, comment se déroule une journée de collecte sur le terrain ? C’est bien simple : on marche. Et on ouvre grands ses yeux pour ne rien louper, surtout pas les plantes qui nous intéressent ! Dans notre cas, une difficulté supplémentaire s’ajoute à notre recherche : les plantes que nous cherchons sont des arbres, entre 20 et 30 mètres de haut, avec les premières branches au-delà de 15 mètres. C’est pour cette raison que nous avions avec nous un guide grimpeur, qui allait chercher les branches à plus de 20 mètres de haut. Sans filet. La preuve.

Montée...

Coupage de branches (si si, il est là, cherchez bien !)...

Et descente ! 
Pendant que notre guide coupe les branches en hauteur, on ne reste pas inactif, au sol. Giulia cherche des plantules (= des jeunes arbres, de quelques dizaines de centimètres de haut), pour en étudier les racines, plus tard, en laboratoire, et en décrire le nombre de chromosomes. Je l’aide à déterrer les jeunes pousses. On cherche également à collecter des fruits pas trop abîmés par les décomposeurs du sol (=tous les arthropodes, champignons, qui se chargent de dégrader la matière organique), pour pouvoir réaliser des germinations en laboratoire (encore très pratique pour étudier les racines, par exemple). Une fois que les branches coupées par Gleison sont redescendues au sol, Rafael vérifie que ce sont bien les bonnes espèces qui ont été récoltées. Avoir des branches portant des fleurs est bien sûr un bonus si l’on veut identifier les espèces plus facilement, car je rappelle qu’en général, les descriptions d’espèces se basent surtout sur la morphologie des fleurs. Ensuite, chaque branche provenant du même arbre est mise dans un grand sac plastique, ce qui permet non seulement de faciliter le transport mais aussi de ne pas se mélanger entre les récoltes.
Voici quelques photos prises durant la journée, et qui montrent l’équipe à l’œuvre et l’environnement de forêt tropicale humide :

Au départ de notre collecte.

Les plantules prélevées...

... par Guilia...

... qui cherche avant tout des racines. Réussi !

Rafael identifie avec certitude les branches coupées par Gleison.

Pause photo !
Le soir venu, repos bien mérité ? Que nenni ! Il faut d’abord noter soigneusement quelles plantes ont été récoltées dans la journée, et surtout leur attribuer un numéro de collecte, qui nécessite une autorisation et un permis, déposé auprès des instances scientifiques brésiliennes. C’est Rafael qui se charge d’attribuer un tel numéro à chaque spécimen. Ensuite, les branches, feuilles, fleurs, fruits, sont mis sous presse provisoire (une petite presse mobile de voyage) pour y être conservés, avant d’être séchés une fois revenu au laboratoire. Mais ce n’est pas tout. Afin de conserver certaines parties des spécimens pour des études sur l’ADN, on utilise du Silicagel, ou gel de silice en bon français. On en trouve sous forme de petits sachets de perles transparentes dans les boites à chaussures. En recherche, on achète ces cristaux par seaux entiers. Cela permet de déshydrater les échantillons de feuilles en une journée tout au plus, sans utiliser de produits conservateurs, parce que les produits conservateurs ont en général un impact sur la qualité de l’ADN qui pourra être utilisé plus tard. 

Préparation de la presse.

Comment bien aplatir les rameaux à conserver. [Source : R.B. Pinto] 

Taille relative des fruits et d'une plantule de Hymenea. [Source : R.B. Pinto]

Un botaniste heureux. [Source : R.B. Pinto]
Et en petit bonus, une vidéo de la forêt, le soir, une fois revenu au camp. 


Une fois revenu au laboratoire, les échantillons sont mis sous presse et au séchoir. Il est vital de bien réaliser cette étape afin d’éviter tout problème de champignons, qui pourraient venir s’attaquer aux plantes coupées et les dégrader, spécialement dans des environnements tropicaux. En effet, à cause de l’humidité, dès que les plantes sont coupées, elles sont la proie des champignons. Un séchage rapide après la récolte garantit une meilleure conservation.

Les plantes sont pressées entre des planches de cartons, d'aluminium et de papier journal... [Source : G. Melilli]

... puis elles sont mises à sécher au dessus de lampes très chaudes. [Source : G. Melilli]
En bonus, des trucs archi cool aperçus dans la forêt :

Une chenille.

Une liane avec une forme trop cool.

Heliconia sp.

Un palmier en fruits.

Une fourmilière... ou termitière. Je ne suis pas allé mettre les doigts pour vérifier.

Une Angiosperme parasite !

Une résine qui sent trop bon quand on la fait brûler.

Un insecte qui pue. Surement un Coléoptère.

Un insecte qui mange une fourmis. Peut être une punaise.

Un joli papillon.

Probablement Calliandra sp.

Une vieille feuille (gauche) et une jeune feuille (droite) sur la même plante. La couleur plus foncée est due à la présence de composés secondaires protecteurs contre les UVs et les phytophages.

Une Annonaceae, probablement Guatteria sp.

Un insecte non identifié.

Une mini mini grenouille.

Une mante religieuse-feuille.

Hymenolobium sp. est un des plus grands arbres de la Reserva.

Swartzia sp.

Et pour finir, un toucan ! [Source : R.B. Pinto]

Collecte à Tupé

Après deux jours de repos, nous repartons pour une autre région de l’Amazonie, très différente de la zone de terre ferme où nous avons travaillé. En effet, il s’agit d’un environnement de type « igapò », qui désigne les zones de rivière bordées par le Rio Negro. Un point important à souligner ici : le Rio Negro est un affluent de l’Amazone, et comme son nom l’indique, les eaux de cette rivières sont noires et légèrement acides (attention hein, acide ne veut pas dire dangereux au point de faire fondre la coque des bateaux, c’est seulement que le pH se situe légèrement en dessous de 7). Et ça tombe vraiment bien pour nous, parce que les moustiques ne se développent pas dans les eaux acides… ça, ça nous facilite la tâche (parce que faire du terrain avec des bourdonnements continus dans les oreilles c’est vraiment désagréable croyez-moi). 

Pour vous donner une idée de l'environnement, voilà à quoi ça ressemble :

Le bateau à droite, c'est notre taxi.
En bateau en train de chercher des plantes.



Alors, comment s’organise une collecte de terrain dans un environnement proche de l’eau ? Tout d’abord, à la différence de la Reserva Ducke, nous n’allons pas dans un endroit spécifiquement réservé aux scientifiques, mais nous allons être hébergés chez des habitants locaux. De plus, le mode de déplacement privilégié est le bateau, même si c’est actuellement la saison sèche et que les eaux du fleuve sont au plus bas. Alors on laisse tomber les grosses bottes de marche, on enfile son maillot et on n’oublie pas ses sandales !
Le premier jour, la collecte se déroule de la façon suivante : nous scrutons le rivage depuis le bateau, parfois à l’œil nu, parfois à l’aide du zoom d’un bon appareil photo, parfois à l’aide de jumelles, pour reconnaître de loin les arbres qui semblent correspondre aux espèces recherchées. Car oui, ici, par de carte précise avec l’emplacement que chaque arbre, il faut chercher. Quand on cherche, on finit par trouver ! Une espèce de Crudia se trouvait non loin de la rivière. Oui, une seule espèce ça peut paraître peu, mais quand on a pour objectif de trouver un arbre précis dans ce type d’environnement, je vous assure que c’est assez proche de chercher une aiguille dans une botte de foin avec un bandeau sur les yeux et des moufles aux mains.

Petite parenthèse ici, concernant un fait remarquable observé chez toutes ces plantes proches des rivières et affluents de l’Amazone. Il faut savoir qu’ici, sous l’équateur, la température reste constante toute l’année, mais c’est la pluviométrie qui change beaucoup.

Variation de la pluviométrie et du niveau du fleuve au cours d'une année. [Source : Parolin 2009]
Le niveau du fleuve peut varier de 10 mètres en hauteur ! C’est à peu près la hauteur d’un immeuble de trois étages, pour vous donner une idée, ou bien la longueur d’un autobus. Et donc, pendant la saison des pluies, les arbres se retrouvent… les pieds dans l’eau. Et souvent même bien plus que les pieds ! Certains ont même le feuillage submergé… pendant plusieurs mois ! Il existe alors tout un tas d’adaptations morphologiques permettant à ces plantes de survire sous l’eau et même de tirer parti de cette submersion forcée. En effet, sous l’eau, il n’y a pas d’oxygène gazeux donc les racines de la plante sont en situation d’anoxie (absence totale d’oxygène. On pourrait penser que si on empêche un être vivant de respirer … il meurt. Mais pas toujours, et particulièrement, pas ici. Les plantes modifient à la fois leur métabolisme (entrée en dormance, utilisation des sucres stockés dans les racines pendant la période sèche) et leur morphologie (formation d’aérenchyme, un tissus très spongieux permettant aux gaz de circuler par diffusion plus efficacement dans certaines parties de la plante). Je ne vais pas lister tous les changements que subissent ces plantes, ça pourrait faire l’objet d’un article complet, mais si vous voulez plus d’informations sur le sujet vous pouvez consulter l’article de Parolin (2009), et comme c'est en libre accès, en plus c'est parfait.

Fin de la parenthèse, retournons à nos moutons. Enfin à notre collecte. Le soir venu, il faut encore une fois trier, étiqueter les échantillons et prélever ce que nous voulons garder pour conserver dans le Silicagel en vue d’extractions d’ADN futures. Cette fois, le travail se fait à la lampe torche car nous sommes rentrés après la nuit.

Les branches à mettre sous presse sont sélectionnées...
... puis des échantillons de feuilles sont conservés en gel de silice...
... et les échantillons sont enfin mis sous presse.
Le lendemain, encore une journée de collecte, entamée par une jolie pluie tropicale. On n’est pas fous, on a attendu que ça se calme…


Cette fois, la collecte s’est réalisée non pas aux abords directs du fleuve, mais plus profond dans la forêt environnante. Un terrain légèrement différent de ce que nous avions connu la veille, alternant entre une foret de type « terra firme » et des marécages et cours d’eau. Nous avons eu la chance de trouver une autre espèce de Crudia, différente de celle que nous avions trouvée le jour précédent. L’arbre dont nous avons prélevé des branches se trouvait surplombant une cascade (on en a profité pour faire trempette, c’est ça aussi la recherche, faut savoir se ménager de temps à autre). Cette deuxième récolte, assez inespérée, permettra à l’avenir d’avoir plus de données pour mes analyses. En effet, il aurait été possible de travailler sur une seule espèce pour développer des marqueurs moléculaires, mais en ayant deux espèces à disposition, je vais pouvoir prendre en compte la présence de la variabilité qui existe entre les espèces (ou tout du moins, entre ces deux là). 
Voilà, les aventures de terrain c’est fini pour aujourd’hui, et pour un petit moment, car dès à présent je repars vers le sud du Brésil pour assister à un congrès sur la morphologie des Légumineuses et travailler en laboratoire sur les échantillons récoltés au cours de mon périple !

Sources des photos : B. Domenech, excepté lorsque c'est précisé !

Article : Parolin, 2009. Submerged in darkness: adaptations to prolonged submergence by woody species of the Amazonian floodplains. Annals of Botany.


Related Posts Plugin for WordPress, Blogger...