vendredi 28 juillet 2017

L’abominable mystère de Darwin : aux origines des plantes à fleurs

L’autre jour, j’ai eu la chance d’assister à une conférence du botaniste Francis Hallé, sur les comparaisons entre plantes et animaux. Entre autres choses, M. Hallé est à l’origine du projet « radeau des cimes » qui vise à étudier la canopée des forêts tropicales humides par le dessus (et c’est quand même ultracool). Mais ce qui m’a interpellé, lors de cette conférence, c’est cette affirmation : les plantes à fleurs, telles que nous les connaissons, n’ont pas besoin des animaux pour vivre, évoluer, se reproduire, se nourrir. Alors, je suis d’accord que la plupart du temps, en effet, les animaux sont prédateurs des plantes – brouteurs surtout – mais il est un cas pour lequel je suis en désaccord avec M. Hallé, et c’est le cas des rapports des plantes avec leurs pollinisateurs. 

Quelques exemples des animaux capables de polliniser les plantes à fleurs. En haut, à gauche, une abeille sur une Salvia; en haut à droite, un syrphe sur un Caltha; en bas à gauche un colibri, en bas à droite une chauve souris avec une Gesneriaceae.

L’ayant fait remarquer à M. Hallé, celui-ci répondit par l’affirmation qu’à terme, si les pollinisateurs disparaissaient, certaines espèces végétales en souffriraient et s’éteindraient probablement, mais que la grande majorité des végétaux n’en serait pas ou peu affectée. Alors, peut-être que cela sera le cas dans le futur – et avec tous les soucis actuels liés à l’empoisonnement des abeilles par les pesticides utilisés en agriculture intensive, on est bien partis pour observer une réelle diminution des production agricoles où la pollinisation par ces insectes joue un rôle important – et ça personne ne peut le prédire, mais ce qui m’intéresse ici, ce n’est pas ce qui va se passer, mais ce qui s’est déroulé il y a bien longtemps… au Crétacé. Car c’est à cette époque que les premières plantes à fleurs sont apparues – selon les dernières datations et fossiles retrouvés. Ce qui est intriguant ici, c’est que dès leur apparition, les angiospermes ont subit une explosion de diversification, jusqu’à devenir le groupe de végétaux majoritaire sur Terre en termes de nombre d’espèces et d’individus. Et je me demande, les plantes à fleurs ont-elles « explosé » ainsi toutes seules, ou bien ont-elles été aidées… par leurs pollinisateurs ? On parle en effet beaucoup de coévolution entre les plantes et les insectes actuellement, mais qu’en était-il au tout début ? Quelle est la part du rôle des insectes et autres pollinisateurs dans l’évolution des plantes à fleurs ?


Au commencement…


L’apparition des plantes à fleur a posé un gros problème conceptuel à Darwin lorsqu’il a pensé sa théorie de l’évolution. En effet, dans la majorité des groupes d’êtres vivants, Darwin constate une apparition graduelle des caractères au cours de l’évolution, qui permettent de relier les groupes entre eux. Le problème, chez les plantes à fleurs, c’est qu’il n’y a,à première vue, aucune structure intermédiaire de « fleur » pouvant expliquer son apparition et le tâtonnement de l’évolution au cours du temps : on passe d’un système de reproduction sans fleurs à un système où les fleurs deviennent le moyen majoritaire de se reproduire. Cela semble totalement aberrant pour Darwin, pour qui l’évolution est graduelle et faite progressivement ; or dans le cas des plantes à fleurs, elle semble rapide et menant directement à une structure florale extrêmement constante et bien établie.

Pour expliquer cette absence de gradualisme, Darwin propose l’hypothèse suivante : les plantes à fleurs se sont développées sur un continent maintenant disparu, ce qui entraine une absence de fossiles qui auraient pu donner des exemples de morphologie intermédiaire. Par la suite, les angiospermes auraient migré sur les autres parties de la Terre, pour coloniser tous les milieux possibles.

Un scientifique contemporain de Darwin, nommé Saporta, émet quant à lui une autre hypothèse novatrice pour l’époque. Il part de l’observation que certains groupes d’insectes, actuellement diversifiés et possédant des interactions avec les plantes à fleurs, ne se retrouvent pas dans le registre fossile de l’époque pré-angiospermienne. Il propose alors que les plantes à fleurs aient co-évolué avec d’autres groupes animaux, de manière fulgurante, au Crétacé : il s’agit d’une des premières conceptualisations des variations de taux de diversification au cours de l’évolution, chose qui pour Darwin n’est au départ pas concevable – il considérait que l’évolution avait une vitesse constante pour tous les organismes, or on s’est aperçu plus tard que c’était loin d’être le cas. Darwin va se montrer très enthousiaste lorsque Saporta lui suggère cette idée, et s’empresse de la considérer comme l’hypothèse la plus plausible pour expliquer son « abominable mystère ».

Alors, peut-on considérer que l’origine des angiospermes est avant tout un « saut évolutif », sans processus graduel, ou bien manque-t-il effectivement des informations fossiles pour nous permettre d’avoir une vue d’ensemble plus exacte ?


Un scénario probable


Traditionnellement, l’apparition des plantes à fleurs sur Terre est datée du Crétacé, aux alentours de 130 millions d’années (Herendeen et al 2017), même si la datation moléculaire tend à reconstruire l’âge d’origine des angiospermes comme antérieur au Crétacé. Avant cette époque, aucune trace fossile certaine et non-ambigüe n’existe pour attester de la présence des angiospermes. De nombreuses études sont penchées sur la question de cette apparition soudaine, et il en ressort que l’explosion évolutive des plantes à fleurs puisse s’expliquer par une forte relation avec les insectes. Même si de nombreux groupes d’insectes étaient déjà présent avant l’apparition des plantes à fleurs sur Terre, on sait que lorsqu’un insecte consomme du pollen, il en est également le vecteur pour la pollinisation. C’est le cas par exemple du groupe des Coléoptères, qui étaient des pollinisateurs potentiels pour les premières plantes à graines comme les fougères à graines ou les gymnospermes. On retrouve même certains fossiles d’insectes qui possèdent du pollen stocké dans leur estomac !

Les insectes possédant des caractères strictement liés à la nutrition grâce aux fleurs, comme les longues trompes (proboscis) permettant d’aller chercher le nectar au fond de la corolle, n’apparaissent qu’à partir du Crétacé, soit en même temps que les premières angiospermes. On observe une diversification des lignées comprenant les abeilles, les guêpes, les bourdons, les syrphes, bref, tous les pollinisateurs les plus actifs à l’heure actuelle. On peut donc parler ici d’une coévolution et co-radiation* des insectes pollinisateurs et des plantes à fleurs. Mais quant à savoir qui a été le premier à entraîner la diversification de l’autre, pour le moment, on ne peut rien en dire !

*en biologie, on parle de radiation évolutive pour décrire l’apparition de nombreuses lignées sœurs sur laps de temps très court


Les fleurs ancestrales pollinisées par les insectes ?


En évolution, on se sert principalement des arbres phylogénétiques (graphiques permettant de représenter les liens de parenté entre les organismes vivants) pour tester tout un tas de scénarios évolutifs et pour reconstruire l’apparition de certains caractères. L’étude de Hu et al (2008) utilise ce principe : les chercheurs se sont basés sur la phylogénie connue des plantes à fleurs – autrement dit, les relations évolutives entre les différentes familles actuelles de plantes à fleurs – afin de modéliser l’évolution des modes de pollinisation au cours du temps. C’est seulement par la suite au cours de l’évolution que le mode de pollinisation par le vent s’est développé jusqu’à parfois devenir majoritaire dans certains groupes, alors que la pollinisation par les insectes est considérée comme ancestrale.
Figure tirée de l’article de Hu et al (2008) montrant que le mode de pollinisation par les insectes (en blanc, sur les branches) est considéré comme le plus probable pour l’ancêtre des plantes à fleurs.

Bon, vous me direz, tout ça, c’est seulement des conjectures, pas forcément vérifiables puisqu’il s’agit de choses qui ont eu lieu il y a très longtemps. Sauf que les chercheurs n’en sont pas restés là : ils ont aussi analysé des agrégats de grains de pollens, retrouvés dans les couches sédimentaires. Par comparaison avec ce que l’on trouve de nos jours, ces agrégats sont caractéristiques de la pollinisation par les insectes. En effet, les fleurs pollinisées par les insectes vont avoir tendance à produire ce type de pollen collant et visqueux. La présence de ces agrégats, dès le Crétacé moyen – âge supposé de l’apparition des plantes à fleurs – est donc un indice supplémentaire permettant de dire que les premières fleurs étaient pollinisées par les insectes.


Qui de l’insecte ou de la fleur est apparu en premier ?


Bon, en vrai dans notre cas, il faudrait dire « Qui de l’insecte ou de la fleur s’est diversifié en premier ? ». Pour revenir à notre question initiale, nous ne savons toujours pas si ce sont les insectes qui ont enclenché la diversification des plantes à fleurs en devenant pollinisateurs, ou bien le contraire, c'est-à-dire si l’apparition des plantes à fleurs a augmenté la diversification des insectes.

Regardons à présent l’aspect génétique de la chose. Chez les plantes à fleurs, il est courant d’observer des duplications du génome, encore appelé polyploidisation. Ce sont des évènements aléatoires, qui génèrent de la diversité génétique de manière ponctuelle. Souvent, ce phénomène est associé à l’apparition de nouvelles fonctions – au niveau du génome ainsi que de la morphologie. Plusieurs lignées peuvent aussi subir plusieurs évènements de polyploidisation indépendants successifs. Il n’est donc pas incongru de penser, comme l’équipe de DeBodt et al (2005) le propose, que la diversité de forme et de fonction des plantes à fleurs est potentiellement due à des évènements de duplication du génome au cours de l’évolution. La présence de la fleur telle que nous la connaissons serait donc, d’après eux et d’après de nombreuses autres études, le résultat d’une duplication des gènes. Si l’on considère cette hypothèse – étayée par les études des génomes de nombreuses plantes actuelles – alors en effet, les insectes n’auraient aucun rôle dans la diversification des plantes à fleurs au cours du Crétacé.


… et pour finir


Mais alors, les insectes ne servent à rien dans tout le processus de diversification des plantes à fleurs ? Nenni !! Au contraire, ils sont fort utiles ! Il est vrai qu’on ne peut pas être certain quant au rôle de ceux-ci dans la diversification des plantes à fleurs au Crétacé – et la question restera probablement en suspens. Par contre, chez certains groupes actuels de plantes à fleurs, plusieurs études mettent en évidence qu’il existe une forte corrélation entre un changement de pollinisateur et une diversification intense. C’est le cas des plantes du genre Aquilegia, comme décrit dans l’étude de Whittall et Hodges (2007) : l’interaction très étroite avec des pollinisateurs spécialisés est fortement corrélée à l’augmentation des taux de spéciation chez les plantes, qui est la force évolutive à l’origine de l’apparition de nouvelles espèces.


Pour conclure, on peut dire que les plantes à fleurs sont probablement apparues suite à des remaniements intenses dans le génome, mais qu’elles ont pu se diversifier grâce à l’interaction avec les insectes pollinisateurs. On sait également que les insectes ne sont pas les seuls pollinisateurs des plantes à fleurs, et que dans de nombreux groupes tropicaux, ce sont les oiseaux et les chauves-souris qui assurent la pollinisation… Si les insectes n’avaient pas existé, il est probable qu’un autre groupe d’animaux auraient pris l’avantage et se seraient diversifié conjointement avec les angiospermes. Dire que les plantes à fleurs auraient pu se débrouiller toute seules, comme le fait M. Hallé, n’est donc pas entièrement juste et nécessite de considérer les phénomènes évolutifs avec le plus grand soin, afin de ne pas faire de raccourcis pour sauter d’une observation à la conclusion, sans passer par la case de la réflexion !


Bibliographie


Friedman, W.E. The meaning of Darwin’s « abominable mystery ». 2009. American Journal of Botany. 96(1):5-21

Herendeen, P.S., Friss, E.M., Pedersen, K.R., Crane, P.R. 2017. Palaeobotanical redux: revisiting the age of the angiosperms. 3:17015

Grimaldi, D. The co-radiations of pollinating insects and angiosperms in the Cretaceous. 1999. Annals of the Missouri Botanical Garden. 86:373-406

Labandeira C.C. A paleobiologic perspective on plant-insect interactions. 2013. Current opinion in Plant Biology. 16:414-421

Hu, S, Dilcher D.L., Jarzen D.M., Taylor D.W. 2008. Early steps of angiosperm–pollinator coevolution. PNAS. 105(1):240-245

De Bodt, S., Maere S., Van de Peer, Y. 2005. Genome duplication and the origin of angiosperms. Trends in Ecology and Evolution. 20(11):591-597

Whittall, J.B., Hodges, S.A. 2007. Pollinator shifts drive increasingly long nectar spurs in columbine flowers. 447(7):706-710


Boris


lundi 24 avril 2017

Halipegus, le voyageur insolite

Voyager, découvrir de nouveaux endroits, des paysages et des climats qui ne se ressemblent pas. S’établir pour un temps et repartir à l’aventure. Un rêve pour certains, un besoin fondamental pour d’autres. Car certaines créatures naissent avec ça dans leur ADN, cette nécessité viscérale de vivre plusieurs vies.

Il était une fois une grenouille, un escargot, une demoiselle (la cousine de la libellule, pas la jeune fille !) et un ostracode. Ces quatre animaux avaient bien du mal à se trouver des similitudes. Un amphibien, un mollusque, un insecte et un crustacé, difficile de faire plus différent. Pourtant, ils partageaient un point commun, peut-être un tantinet intime et dérangeant : un parasite.
 
 
Un crustacé ostracode (Crédits : Markus Lindholm), un mollusque physidae (Crédits : Fountain Posters), un insecte odonate Ischnura verticalis (Crédits : Joltthecoat) et une grenouille Rana catesbeiana (Crédits : Esteban Alzate)


Que des parasites soient capables d’infecter une myriade d’espèces différentes n’a rien d’exceptionnel. Au contraire, les parasites généralistes, c'est-à-dire qui ne font pas les difficiles quant à l’espèce de leur hôte, sont d’autant plus susceptibles d’en trouver un rapidement. Et de perdurer. Au contraire, les parasites spécialistes, ceux qui chipotent et veulent absolument pour hôte une espèce bien précise sont complètement dépendants de cette espèce pour boucler leur cycle de vie. Et puis il y a Halipegus eccentricus. Ce ver trématode (photos plus bas) porte bien son nom. D’un côté, il est plutôt de la catégorie des généralistes, et se contente de plusieurs espèces d’hôtes différentes, du moment qu’elles se ressemblent un peu. Mais d’un autre côté, un hôte ne lui suffit pas. Ni deux. Ni trois. Car Halipegus eccentricus, vous l’aurez compris, est un des rares parasites à inclure quatre hôtes successifs dans son cycle de vie : quatre bestioles, citées plus haut, qui appartiennent en plus à des groupes on ne peut plus différents. Ça tombe bien, notre parasite aussi, sait être différent…

Tout comme les autres trématodes, Halipegus eccentricus passe par plusieurs stades pendant son cycle de vie. Tout commence dans une grenouille. Dans ses trompes d’Eustache, ce canal entre la bouche et les oreilles, pour être plus précis. C’est ici que l’on trouve généralement les adultes. Ceux-ci pondent des œufs qui sont relâchés directement dans l’environnement. Oui car en plus d’avoir réussi à s’adapter aux entrailles de quatre animaux, nos trématodes peuvent aussi se balader à l’air libre ! Du moins dans l’eau, dans le cas présent. Les œufs sont ensuite avalés par un premier hôte intermédiaire, un escargot aquatique, où ils se développent en plusieurs stades, avec multiplication asexuée des individus. En particulier, des sporocystes produisent des rédies, qui produisent ce qu’on appelle des cercaires, des larves parées pour la suite de l’aventure.

Les cercaires sont ensuite expulsées du mollusque par voie naturelle, et vont infecter un deuxième hôte intermédiaire, des crustacés ostracodes, devenant au passage des métacercaires. Pour rejoindre l’hôte définitif, c'est-à-dire l’hôte dans lequel le parasite va se reproduire (les grenouilles donc), deux possibilités s’offrent aux métacercaires. D’une part, il est possible que les crustacés ostracodes soient mangés par des têtards. Le parasite survivrait alors jusqu’à la métamorphose complète en grenouilles. Plus récemment, une autre voie a été mise en évidence. Celle-ci fait intervenir des odonates, des insectes qui ont également une larve aquatique et un adulte aérien, et qui constituent une proie pour les grenouilles. Il semble que les parasites, lorsqu’ils passent par les insectes, subissent peu de modifications. L’insecte est donc relayé au rang d’hôte paraténique, c'est-à-dire un hôte non obligatoire mais facilitant la transmission.

Cycle de vie du parasite Halipegus eccentricus.
Crédits des photos de parasite : Matthiew Bolek, Bolek et al. 2010.

Face à un parasite au cycle de vie si complexe, de nombreuses questions se posent. Notamment celle de l’évolution d’un tel cycle. Une des hypothèses est que les parasites avaient au départ des cycles plus simples, mais étaient régulièrement ingérés par accident par d’autres espèces. En réussissant à survivre à ces évènements traumatisants, les parasites auraient fini par inclure ces espèces dans leur cycle de vie. Cela signifie également que les parasites doivent faire face à un certain nombre de contraintes. D’une part, si habiter un hôte peut paraître confortable (nourriture disponible, habitat aux conditions stables, etc.), le parasite doit développer des stratégies pour éviter de se faire éjecter par le système immunitaire de l’hôte. D’autant plus que celui-ci diffère d’un hôte à l’autre ! D’autre part, ce sont quatre épisodes de transmission qui attendent le parasite, avant que celui-ci puisse accéder à la reproduction sexuée. Le succès du cycle dépend donc de nombreux facteurs, notamment la présence de tous ses hôtes dans le même environnement.

En raison de ces nombreuses contraintes, les cycles de vie des parasites comportent rarement autant d’hôtes. Ici, un des quatre hôtes du parasite (l’odonate) n’a été découvert que tardivement. Ce qui est intéressant, c’est qu’un parasite très similaire à Halipegus eccentricus, originaire d’Amérique, avait déjà été décrit dès 1978 en Europe. Halipegus ovocaudatus, selon la description originale de son cycle de vie, infecte également successivement amphibiens, mollusques, crustacés et odonates. Bizarrement, tandis que son homologue américain continue d’attirer l’attention, Halipegus ovocaudatus semble être tombé dans l’oubli… Vu la complexité de leur cycle, ils méritent pourtant tous deux l’attention des chercheurs. Ils feraient notamment de bons candidats pour être des parasites manipulateurs !


Références :


Bolek, M.G., Tracy, H.R. & Janovy, J.Jr. 2010. The role of damselflies (Odonata: Zygoptera) as paratenic hosts in the transmission of Halipegus eccentricus (Digenea: Hemiuridae) to anurans. Journal of Parasitology, 96, 724-735.

Kechemir, N. 1978. Evolution ultrastructurale du tégument d'Halipegus ovocaudatus Vulpian, 1858 au cours de son cycle biologique. Zeitschrift für Parasitenkunde, 57, 17-33.



vendredi 17 février 2017

Un casse-tête enfin résolu pour les zoologistes

Bon ça fait presque deux ans que je n’ai pas publié ici. Du coup je suis un peu en retard sur l’histoire que je vais vous raconter, mais il fallait que je vous en parle ! Replongeons-nous donc dans l’étude des bébêtes bizarres !

En 2014, je vous parlais de l’étrange Dendrogramma (Un nouveau casse-tête pour les zoologistes). Cet animal des fonds des mers australiennes ressemblant à un champignon avait fasciné les zoologistes pendant quelques mois. En effet, leur morphologie laissait supposer qu’il faisait partie d’un nouveau groupe d’animaux, proche peut-être des méduses et coraux, ou des éponges de mer, et que par leur position dans l’arbre de la vie ils pourraient nous en apprendre plus sur l’origine des animaux. Rien que ça pour un p’tit bout de truc mou au fond des mers ! Malheureusement le matériel était assez abîmé. Les spécimens récoltés il y a plus de 30 ans sont restés  conservés pendant des années (pour être finalement décrits en 2014) dans du formol et de l’alcool, ce qui les a déformés et fripés comme des raisins secs, aussi rendant l’ADN difficile à récupérer, laissant les scientifiques perplexes. Si certains étaient très enthousiastes, beaucoup disaient que sans ADN on ne pouvait rien conclure et que c’était probablement un parent des méduses et autres coraux.


Pour vous rafraîchir la mémoire, voici de vieux Dendrogramma desséchés ! Source Just et al . 2014.


Finalement, moins de deux ans après cette publication, une équipe de chercheurs australiens a réussi à récolter cet animal une nouvelle fois. Chose qui ne serait probablement jamais arrivée si les auteurs du premier papier n’avaient jamais publié leur matériel de mauvaise qualité (mais c’est pas leur faute on a dit). Cette équipe australienne a pu ainsi accumuler beaucoup de données génétiques de Dendrogramma, publiant un second papier sur le sujet, pour enfin le placer confortablement et bien au chaud dans l’arbre du vivant. Et quelle ne fut pas leur non-stupeur quand ils réalisèrent que c’était bien un parent des coraux et méduses : un cnidaire, surprise ! (Cette blague est une des plus lourdes des zoologistes, à lire à voix haute on comprend mieux). Plus précisément un hydrozoaire siphonophore. Et c’est quoi un hydrozoaire siphonophore ? Les hydrozoaires sont, au même titre que les coraux et les méduses, des cnidaires, mais qui tiennent un peu des deux. En effet, beaucoup d’hydrozoaires font des colonies comme les coraux, et ces colonies vont souvent former des méduses. C’est un groupe très commun (on en trouve même en eaux douces) et ils peuvent former des colonies très complexes. Notamment les siphonophores constituent des colonies compliquées consistant en plusieurs individus dont certains servent à la chasse, et d’autres à la flottaison (certains lecteurs ont peut-être déjà croisé un siphonophore : la physalie, ou caravelle portugaise, à la piqûre très douloureuse, sur la plage ou dans l’eau). 


Une Physalie, un des siphonophores les plus connus. Attention ça pique ! Source : magnifique siphonophore.


Et c’est la complexité des siphonophores qui a brouillé les pistes par rapport à Dendrogramma. Dendrogramma n’est pas un siphonophore entier mais juste une partie d’un siphonophore de la famille des Rhodaliidae (on continue avec les noms barbares, rassurez-vous je les ai presque tous placés). Des siphonophores vivant profondément qui flottent tout en restant accrochés au fond, un peu comme des ballons. Et certains individus chez les Rhodaliidae forment ce qu’on appelle des bractées, des unités qui aident à la flottaison ou à la défense, on ne sait pas bien. Or un œil dans la littérature des Rhodaliidae (et non pas dans les Rhodaliidae, c’est urticant) montre que Dendrogramma ressemble à s’y méprendre à une bractée. Affaire close donc… Les bractées ne possèdent pas de « cnidocytes », des cellules spécialisées qui servent à la chasse propres aux cnidaires, et c’est pour cela que les premiers auteurs n’ont pas pu assigner Dendrogramma à coups sûr aux cnidaires. Aussi il y a deux espèces de Dendrogramma décrites mais les données génétiques semblent montrer que ce n’en est qu’une seule : soit ce sont deux types de bractées différentes d’une même colonie, soit ce sont différents stades de développement de la bractée. Enfin, Dendrogramma semble être une nouvelle espèce de Rhodaliidae vu que les bractées sont bien plus grandes que ce qu’on trouve chez les autres espèces connues (2 à 6 millimètres en général, et jusqu’à 20 millimètres pour Dendrogramma : le monstre ! Mais malheureusement il n’existe pas de données génétiques sur  la majorité des Rhodaliidae décrits pour confirmer cela avec les gènes).


Des Dendrogramma tout frais et leur position phylogénétique. Finalement pas si bizarre que ça en a l’air… Source : O-Hara et al 2016.

Un Rhodaliidae accroché au fond. Oui ça ne ressemble pas à grand-chose mais croyez-moi, il y a des bractées dedans… Je crois. Source : Rhodaliidae joyeux

Alors, l’affaire est close ? On a un organisme a priori nouveau qui n’en n’est pas tellement un (enfin un peu, c’est probablement une nouvelle espèce). Au final c’était beaucoup de tumulte pour rien, quelle déception… Eh bien si l’affaire est vite réglée d’un point de vue biologique, c’est une histoire assez intéressante qui illustre parfaitement le fonctionnement de la science ! Mais aussi de la communication scientifique ! Penchons-nous donc un peu sur l’aspect plus « sociologique » de cette histoire. A partir d’ici l’article sera plus une réflexion personnelle (j’allais pas manquer d’enthousiasme sur une histoire de bébêtes bizarres quand même !).

Il est déjà intéressant de noter que si la découverte de Dendrogramma a été annoncée à coups de grands titres racoleurs sur internet (par exemple : une nouvelle espèce animale ressemblant à un champignon mais qui défie les classifications), il y a eu moins de bruit autour de leur assignation dans les siphonophores. C’est normal c’est du sensationnalisme, si la découverte d’un nouvel organisme est quelque chose de notable, réassigner un organisme c’est quelque chose de commun. Cependant, ça peut laisser l’impression que Dendrogramma est toujours un mystère et que rien n’a été publié entre temps.

On peut aussi noter la véhémence de certains scientifiques sur internet après la découverte initiale de Dendrogramma, décrédibilisant cette découverte sous prétexte qu’on n’avait pas d’ADN (The Tale of a New Phylum That Really Wasn’t). Cette critique m’a laissé perplexe vu qu’on entendait moins de gens dire « il faut du meilleur matériel pour la morphologie ». En effet, s’il s’était avéré que Dendrogramma était un nouveau type d’organisme mais qu’on avait toujours du matériel ininterprétable morphologiquement, on aurait eu l’air fin et on aurait pu faire bien peu de conclusions. Au lieu de ça des gens ont suggéré que Dendrogramma ressemblait à des pensées de mer (cf mon article précédent). Les deux se ressemblent grossièrement mais sont organisées de manière fondamentalement différente. Mais au final, quand on compare des schémas des bractées d’autres Rhodaliidae et de Dendrogramma, on voit très facilement la similarité. Et là se pose une question. Pendant plus d’un an entre les deux publications, alors que Dendrogramma a fait le buzz même au-delà des milieux scientifiques, comment se fait-il que même sans ADN personne n’ait affirmé avec force que Dendrogramma n’est qu’une bractée de Rhodaliidae ? Très probablement parce qu’il y a peu de gens capables de reconnaître ces étranges animaux, et encore moins leurs parties. Le problème n’était pas tellement le manque d’ADN, mais le manque d’expertise dans le domaine (allez, fallait bien que je râle un peu pour défendre les disciplines qui me sont chères !)…


Des bractées comme illustrées dans une publication de 2005. Si quelqu’un avait cette publication en tête en voyant Dendrogramma, il l’aurait reconnu…  source : Hissmann 2005


Donc au final cette histoire ne nous aura pas apporté grand-chose scientifiquement ? Peut-être pas, qui sait, avec un peu de chance cela va relancer un peu la recherche sur ces siphonophores ! Et pour rebondir là-dessus, si certaines personnes semblaient penser que le papier original n’était pas très intéressant, certaines qu’on avait à faire à un cnidaire (sans bien pouvoir expliquer pourquoi), cette découverte a eu le mérite de stimuler les zoologistes pendant plusieurs semaines et de ressusciter un groupe d’animaux auquel personne ne s’intéressait vraiment, tout en collectant de nouvelles données morphologiques et génétiques dessus. Ceci n’aurait jamais été possible sans l’imparfaite publication originale. Et ça illustre exactement le fait que la science est une discipline dynamique et labile. Qu’il ne faut pas attendre d’avoir des résultats parfaits pour se lancer et publier : une publication scientifique en soit est incomplète, elle n’est complétée qu’à la lumière des discussions qui l’entourent et des publications qui suivent. Ca nous rappelle aussi qu’il ne faut jamais faire de conclusions définitives en science à partir d’une seule publication (conclusions qui ne se trouvaient pas dans l’article original mais ça et là dans la presse). Or, malheureusement, les exemples de publications uniques qui entraînent une foule d’affirmations dans la presse sont nombreux. Mais surtout le premier papier nous montre qu’il y a encore tellement de nouveaux organismes à découvrir au fond des océans, tandis que le second papier nous rappelle, lui, que nous avons tout à redécouvrir au fond des océans.


Pour aller plus loin :

L’article de blog original : Un nouveau casse-tête pour les zoologistes.

Le premier article sur le sujet :

-Just J, Kristensen RM, Olesen J (2014) Dendrogramma, New Genus, with Two New Non-Bilaterian Species from the Marine Bathyal of Southeastern Australia (Animalia, Metazoa incertae sedis) – with Similarities to Some Medusoids from the Precambrian Ediacara. 

L’article qui montre que ce sont des siphonophores :

-O’Hara TD, Hugall AF, MacIntosh H, Naughton KM, Williams A, et Moussalli A (2016). Dendrogramma is a Siphonophore. Current Biology 26:R457-R458.

Un article qui montre des Rhodaliidae et leurs bractées :

-Hissmann K (2005). In situ observations on benthic siphonophores (Physonectae: Rhodaliidae) and descriptions of three new species from Indonesia and South Africa. Systematics and Biodoversity 2(3):223-249.

Related Posts Plugin for WordPress, Blogger...